
Towards real-time SVD based motion detection
on GPU

Ádám Botos1, Dmitry Chetverikov2, and Péter Kovács1

1 Eötvös L. University, Pázmány Péter stny. 1/C, Budapest, Hungary,
fokosalja@gmail.com, kovika@inf.elte.hu

2 Institute for Computer Science and Control, Kende út 13-17, Budapest, Hungary,
csetverikov@sztaki.hu,

Abstract. The Singular Value Decomposition (SVD) can be efficiently
used to detect motion in videos captured by a static camera. However,
the SVD is computationally demanding when a large matrix - a spatio-
temporal data window typically composed of ten to thirty frames - is
repeatedly processed. Recently, a running (incremental) version [1] of the
SVD has been proposed and applied to motion detection. Although much
faster than the direct implementation, the CPU-based running SVD is
still too slow for real-time processing of VGA or larger size videos. In
this paper, we present a GPU implementation of the running SVD that
is suitable for robust, close to real-time motion detection in challenging
full-size, standard frame rate videos. The computational performances
of different hardware configurations are compared showing a significant
gain in processing speed due to the proposed solution.

Keywords: Video processing, motion detection, SVD, GPU.

1 Introduction

In this research, we address the problem of real-time motion, or target, detec-
tion in full-size, standard frame rate videos acquired by static cameras in indoor
or outdoor environments. Numerous approaches to motion detection have been
proposed based on different principles. The reader is referred to study [2] for a
survey and comparison of methods for background modelling and target detec-
tion. Note that the problem addressed in this paper differs from that of change
detection [3] when multiple images of a static scene are acquired at different times
and compared to find changes. The well-known approach to activity recognition
[4] is based on adaptive background subtraction and motion segmentation by
modelling the intensity in each pixel as a mixture of Gaussian distributions.
However, such pixel-wise methods cannot capture the natural dependencies be-
tween neighbouring pixels within regions. In particular, they are sensitive to
background variations typical for both indoor and outdoor data (illumination,
visibility, dynamic background). The methods that operate with regions rather
than individual pixels are usually more robust as they are able to incorporate
and exploit local structural information. In particular, the Principal Component

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

183 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



Analysis (PCA) and the Singular Value Decomposition have been applied in the
context of moving target detection. Due to its generality and robustness, the
SVD proved to be more successful than the PCA as far as motion detection is
concerned. It has been demonstrated that the SVD based algorithms [1, 5, 6] can
cope with background variations even in the cases of complex backgrounds such
as water or vegetation. A critical problem with the SVD is that the amount of
computation increases drastically with the video resolution and the number of
frames in the spatio-temporal window used to estimate the background. Some
studies [5, 6] tried to decrease the computational load of the SVD by reducing
resolution, splitting frame images into rectangular subimages, or using approx-
imate decompositions. However, splitting the frame images leads to artifacts at
the subimage borders while the approximate decompositions result in error ac-
cumulation and the need to reinitiate the detection process from time to time.
Recently, a computationally efficient running version of the SVD [1] has been
proposed and successfully used for motion detection. As the video proceeds, the
incremental approximation-free algorithm [1] does not calculate the SVD from
scratch when the data window steps in time. Instead, the current decomposition
is updated with the entering frame, then downdated with the leaving one. This
solution is much faster than the direct implementation of the SVD. On a CPU, it
allows to process a few frames per second at a reduced video size and for up to 15
frames in the sliding spatio-temporal window. However, the CPU based running
SVD is still too slow for real-time processing of VGA or larger size videos. In
this study, we propose a GPU implementation and test the parallelised running
SVD whose speed approaches the level required for real-time applications with
full-size video streams. The structure of the paper is as follows. First, we briefly
discuss the mathematical background of the SVD and its incremental variant
[1] in the context of motion detection. Then the GPU implementation of the
running algorithm is described and comparative test results are shown and dis-
cussed. Finally, the paper concludes with a summary of the current state of the
research and an outlook.

2 Running SVD for motion detection

The Singular Value Decomposition is defined as follows. Let A ∈ Rm×n be
a real-valued matrix. Then there always exists a decomposition A = USVT,
where the orthogonal matrix U ∈ Rm×m consists of m orthonormal eigenvectors
of AAT; the orthogonal matrix V ∈ Rn×n consists of n orthonormal eigen-
vectors of ATA; S ∈ Rm×n is composed of a diagonal matrix D and a null
matrix. The matrix D = diag(δ1, . . . , δm) contains the singular values of A
which are the square roots of the eigenvalues of AAT. It is usually assumed that
δ1 ≥ δ2 ≥ . . . ≥ δm ≥ 0. A number of methods exist that calculate the SVD.
Following the study [1], we use the well-known Golub–Reinsch SVD algorithm
[7]. The algorithm decomposes an m× n size matrix, where m is the number of
frames used to estimate the background (temporal depth of the data window), n
the total number of pixels in a frame image. Typically, 5 ≤ m ≤ 30, while in our

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

184 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



tests the video size was 768×576 (PAL), that is, m×n and n > 400000. For such
a large matrix, applying the SVD to each data window in a long video would
be prohibitive even if implemented on a GPU. Fortunately, after the single ini-
tialisation for the first m frames, the running procedure [1] can be used at each
temporal step, which applies a fast update algorithm, then a fast downdate algo-
rithm. The former updates the three matrices of the SVD by adding the entering
frame to the current m frames, the latter removes the exiting frame from the up-
dated SVD. Both algorithms modify the sizes of the SVD matrices. The Update
increases the dimension of each matrix by one, the Downdate restores the origi-
nal size. Between the two algorithms, the procedure executes a shift in one of the
matrices. The time complexity of the running SVD is O((m+n)m2) ≈ O(nm2).
The linear dependence on the frame size is important as it allows to work with
full-size video. Note that the time complexity of the Golub–Reinsch SVD [7] is
also O(nm2). However, the same asymptotic behaviour does not mean that in
practice the execution times of the two algorithms are the same. As demonstrated
in [1], the incremental solution is much faster for typical values of the two pa-
rameters. Our tests discussed later in this paper also confirm that the difference
is essential. Contrary to the approaches [5, 6] that apply the conventional SVD,
the incremental solution does not need splitting frames into blocks to achieve ac-
ceptable processing time. Both steps of the running SVD are approximation-free,
so no error accumulation occurs and no reinitialisation is needed. Before apply-
ing the SVD, the image data must be normalised by subtracting the mean and
mapping the values onto a standard range. For each spatio-temporal window,
the background is estimated using the largest singular value and the associated
vectors. (If necessary, more singular values can be used [6].) Then the residual is
calculated as the absolute difference between the input data and the background.
Large residual indicates the areas in motion. After thresholding, the binarised
residual image is cleaned using morphological operations. When fast noisy mo-
tion like snow or rain is present, it may also be useful to apply a spatio-temporal
median filter to several consecutive thresholded frames. In order to visualise the
result of motion detection, the borders of the blobs in the thresholded and filtered
residual are overlaid on the central frame of the data window. Sample results of
the running SVD are shown in Figure 1. The algorithm features robustness to
noise, visibility conditions and varying background. More results are available
at the web site3 of motion detection by the running SVD.

3 Hardware implementation of SVD based motion
detection

We have implemented, tested and compared three procedures for SVD based
motion detection:

1. the direct Golub–Reinsch algorithm that processes each data window sepa-
rately;

3 athos.vision.sztaki.hu/~mitya/research/runsvd/results.html

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

185 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



Fig. 1. Examples of motion detection and segmentation by the running SVD.

Table 1. Three hardware configurations used in the tests.

Hardware
Configurations

Conf. 1 Conf. 2 Conf. 3

CPU
Intel Pentium Dual Core Intel Core i3 Intel Core i5

2.16 GHz 2310M 2.1 GHz 4200U 1.6 GHz

GPU
NVIDIA GeForce NVIDIA GeForce NVIDIA GeForce
9500M 510 MB GT 520M 1 GB GT 730M 2GB

Memory DDR II - 4 GB DDR III - 4 GB DDR III - 8 GB

Comp. Cap. 1.0 2.0 3.0

Produced 2009 2012 2014

2. the sequential running SVD;
3. the parallel running SVD.

Each of the three procedures was executed on three different hardware con-
figurations whose main features are summarised in Table 1. The abbreviation
Comp. Cap. stands for Compute Capability. Its values indicate that more recent
configurations are more powerful.

The image processing functions of the procedures were implemented using the
Open Source Computer Vision (OpenCV) software package [8] that offers GPU
support. The package contains motion detection functions, as well. However,
they are not suitable for real-time video processing. The package also includes
certain matrix operations, but they are not really applicable to very large ma-
trices, and their scope is limited. The parallel data processing algorithms were
implemented with the Computer Unified Device Architecture (CUDA) devel-
oped by the NVIDIA Corp. The data are stored in the memory of the graphics
card, so image data transfer from the CPU memory to the GPU memory should
be optimised for faster operation. The transfer is complicated by the different
formats of matrix storage in OpenCV and CUDA, which necessitates additional
data movement. In this project, two external program libraries were used with

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

186 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



CUDA: The CUDA Basic Linear Algebra Subroutines (cuBLAS) [9] and the
CUDA Linear Algebra (CULA) [10]. The former provides CUDA implemen-
tation of basic matrix operations, while the latter includes more sophisticated
algorithms such as the SVD we need for our purposes.

4 Test results

For testing, we used the 768×576 resolution video data from the Image Sequence
Server [11]. First, the direct implementation of the Golub–Reinsch SVD (pro-
cedure 1) was tested on the three hardware configurations defined in Table 1.
This solution is definitely not suitable for real-time processing since even on the
most powerful configuration (No. 3) the total execution time for a short 50-frame
sequence was over 200 seconds. For more realistic, longer sequences the execu-
tion time was too long even for testing. For this reason, only the two versions of
the running SVD, the CPU and the GPU, were tested and compared in detail.
Figure 2 demonstrates the results of the sequential CPU implementation. The
plot shows the execution times, in seconds, for the growing number of processed
frames on the three hardware configurations. In this case, the number of pro-
cessed frames ranged from 5 to 50. The best result of about 1.3 fps was achieved
on the strongest configuration for the longest sequence. For longer sequences,
the processing speed is the same.

5 10 25 50

Conf. 1 20,87 27,62 68,29 137,36

Conf. 2 8,24 11,97 23,45 42,73

Conf. 3 7,46 10,73 20,59 37,09

0
20
40
60
80

100
120
140
160

Ti
m

e 
(s

ec
)

Number of processed frames

Running SVD - CPU

Conf. 1 Conf. 2 Conf. 3

Fig. 2. Plot of execution times on CPU for the three hardware configurations.

Figure 3 shows the results of the parallel GPU implementation. As this so-
lution is faster, in this case, the number of processed frames ranged from 100 to
600. The best result of about 8.0 fps was achieved on the strongest configura-
tion for the sequence of 250 frames. The processing speed seems to be slightly

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

187 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



content-dependent, but the dependence on content and video length is not sig-
nificant. Due to the GPU implementation, the processing speed was increased
by a factor of six.

100 250 400 600

Conf. 1 51,176 129,206 237,575 358,495

Conf. 2 24,541 59,174 94,072 140,202

Conf. 3 13,84 31,27 53,74 84,12

0
50

100
150
200
250
300
350
400

Ti
m

e 
(s

ec
)

Number of processed frames

Running SVD - GPU

Conf. 1 Conf. 2 Conf. 3

Fig. 3. Plot of execution times on GPU for the three hardware configurations.

5 Conclusion

The 8 fps processing rate provided by our GPU solution for full-size videos can
already be sufficient for the applications where the motion is relatively slow
and the standard full frame rate of 25 − 30 fps is not required. Our further
research and development nevertheless aims at achieving the full frame rate in
near future. Naturally, in this development we hope to make use of the persistent
improvement of the processing power of modern GPUs. As one can see in Fig-
ure 3, configuration 3 is more than four times faster than configuration 1, which
well illustrates the progress made within the four years. Still, there is room for
improving our software solution, as well. The success of a GPU implementation
is mainly influenced by two critical issues. The first one is the selection of the
appropriate program package. Since our task requires a large amount of com-
putation, we have selected the CUDA programming environment supported by
NVIDIA video cards. An essential advantage of this environment is that it sup-
ports numerous other packages including matrix operations and linear algebra.
When CUDA is used for parallel implementation on a GPU, the data copied
to the GPU memory cannot be accessed directly by the CPU. Data transfer is
needed which increases the execution time. The CUDA Thrust library [12] can
be used to access the GPU memory in a more convenient way. Using this library
would need a major programming effort as the Thrust has its own data struc-
ture for supporting parallel implementations. The second critical issue is that

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

188 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015



of the code simplicity. In our development, we have always tried to implement
each program in the simplest possible way. When possible, we have used already
created variables and data structures in order to avoid unnecessary allocations
and data movement.

Acknowledgement. This research has been supported by the Highly industri-
alised region on the west part of Hungary with limited R&D capacity: Research
and development programs related to strengthening the strategic future-oriented
industries manufacturing technologies and products of regional competences car-
ried out in comprehensive collaboration program of the National Research, De-
velopment and Innovation Fund (NKFI), Hungary, Grant. No. VKSZ 12-1-2013-
0038.

References

1. D. Chetverikov, A. Axt, Approximation-free running SVD and its application to
motion detection, Pattern Recognition Letters, vol. 31, no. 9, pp. 891–897, 2010.

2. D. Hull, J. Nascimento, Comparison of target detection algorithms using adaptive
background models, in Proceedings of the 2nd Joint IEEE Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, pp.
117–128.

3. R. Radke, S. Andra, O. Al-Kofahi, B. Roysam, Image change detection algo-rithms:
a systematic survey, IEEE Transactions on Image Processing, vol. 14, no. 3, pp.
294–307, 2005.

4. C. Stauffer, W. Grimson, Learning patterns of activity using real-time tracking,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 747–757, 2000.

5. A. Monnet, A. Mittal, N. Paragios, V. Ramesh, Background modeling and subtrac-
tion of dynamic scenes, in Proceedings of the 9th IEEE International Conference
on Computer Vision, 2003, pp. 1305–1312.

6. F. Kahl, R. Hartley, V. Hilsenstein, Novelty detection in image sequence with
dynamic background, in Proceedings of the 2nd Workshop on Statistical Methods
in Video Processing (SMVP), European Conference on Computer Vision, 2004, pp.
117–128.

7. G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University
Press, Maryland, USA, 4th edition, 2013.

8. Intel Russia, OpenCV 2.4.11.0 Documentation, Available:
http://docs.opencv.org/, 2015, [Online].

9. NVIDIA Corporation, USA, cuBLAS Library v7.0 Documentation, Available:
http://docs.nvidia.com/cuda/cublas, 2015, [Online].

10. EM Photonics Inc., USA, CULA Reference Manual R17, Available:
http://culatools.com, 2014, [Online].

11. University of Karlsruhe, Institute of Algorithms and Cognitive Systems, Image Se-
quence Server, Available: http://i21www.ira.uka.de/image sequences, 1998, [On-
line].

12. J. Hoberock, N. Bell, Thrust. A parallel template library 1.8.0., Available:
http://thrust.github.io, 2015, [Online].

ICT Innovations 2015 Web Proceedings ISSN 1857-7288

189 
S. Loshkovska, S. Koceski (Editors): ICT Innovations 2015, Web Proceedings, ISSN 1857-7288 

© ICT ACT http://ictinnovations.org/2015, 2015


