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Abstract. The challenge to discover knowledge from environmental data that 
has led to usage of methods and techniques such as data mining tools, can 
bridge the knowledge gap between the biological experts and organisms. This 
research aimed to assess relationships between the diatoms and the indicators of 
the environment with Naïve Bayes method. Diatoms are ideal indicators of 
certain physical-chemical parameters and they can be classified into one of the 
water quality classes (WQCs). The classification models are induced by using 
Naïve Bayes technique. The input dataset that is supplied for the naïve Bayes 
method is discretised. Based on the evaluation results, several models are 
presented and discussed. The obtain results from the models are verified with 
existing diatom ecological preference and for some diatoms new knowledge is 
added. To best of our knowledge, this is the first time the prosed method to be 
applied for diatom classification of any ecosystem. 
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1   Introduction 

The water quality classes define in the traditional way can be interpreted as a 
classification problem in the terms of data mining point of view. In this paper 
research, this property is used to discover the appropriate environment conditions for 
newly found diatom, which are an ideal bio-indicator of a certain physico-chemical 
parameter. Considering these facts, we deal with the typical classification problem, 
when we try to build a model that classifies the correct diatoms into one of the WQ 
classes.  

In this domain, classical statistical approach, such as canonical correspondence 
analysis (CCA), detrended correspondence analysis (DCA) and principal component 
analysis (PCA), are most widely used as modelling techniques [18]. Although these 
techniques provide useful insights in the data, they are limited in terms of 
interpretability. Obvious progress in this research area in a direction of interpretabili-
ty, have been made using data mining techniques, mainly decision trees. These 
methods, improves the interpretability and increases the prediction power of the 
models. First attempt to model diatom-indicator relationship for Lake Prespa, have 
been made by [4]. Several of the model produced, knowledge about the newly 
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discovered diatom's relationships with the environment for the first time [4]. New 
class of multi-target decision trees later were used, in order to reveal the dynamic 
nature of the entire set of physical-chemical parameters of this lake ecosystem [15]. 
These methods were more precise and also have increased the interpretability. 
Nevertheless, these methods were not robust on data change. This is an important 
property, because the environmental condition inside of the lake changes over small 
periods of time. 

Many empirical comparisons between naive Bayes and modern decision tree 
algorithms such as C4.5 (Quinlan 1993) showed that naive Bayes predicts equally 
well as C4.5 [3, 5, 7] for many real data domains. To best of our knowledge, this is 
the first usage of Naïve Bayes classifier for diatom classification. The good 
performance of naive Bayes is surprising because it makes an assumption that is 
almost always violated in realworld applications: given the class value, all attributes 
are independent. This is also true for the diatoms that are independent; one diatom can 
be indicator of one water quality class and one for another. Nevertheless, from 
ecological point of view it is very important to estimate the degree that diatom 
depends from the certain environmental conditions. 

Domingos and Pazzani [8] present an explanation that naive Bayes owes its good 
performance to the zero-one loss function. In [9] the authors have shown that the 
performance of naive Bayes is much worse when it is used for regression (predicting 
a continuous value). Moreover, evidence has been found that naive Bayes produces 
poor probability estimates [11, 12]. That’s way the input dataset that we will use in 
the experiments shown in the paper are discrete and we donate a certain class for each 
diatom.  

The rest of the paper is organized as follows: Section II provides the definitions for 
the Naïve Bayes classifier. In Section III we present the diatoms abundance water 
quality datasets as well as the experimental setup. Section IV gives the experimental 
results and the verification of the model results and finally, Section V concludes the 
paper and the research directions are outlined. 

2. Naïve Bayes method 

Classification is a fundamental issue in machine learning and data mining. In 
classification, the goal of a learning algorithm is to construct a classifier given a set of 
training examples with class labels. Typically, an example E is represented by a tuple 
of attribute values (x1, x2,.., xn), where xi is the value of attribute Xi. Let C represent 
the classification variable, and let c be the value of C.  

A classifier is a function that assigns a class label to an example. From the 
probability perspective, according to Bayes Rule, the probability of an example E = 
(x1, x2,…, xn) being class C is: 

( | ) ( )( | )
( )

p E c p cp c E
p E

� . (1) 

Assume that all attributes are independent given the value of the class variable; that is, 
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The resulting classifier is then: 
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The function fNB (E)� is called a naive Bayesian classifier, or simply Naive Bayes 
(NB) (see eq.3). This is called conditional independence. In our paper it is obvious 
that the conditional independence assumption is true, meaning that each diatom is 
independent from one water quality class. 

In order to estimate the probability that one diatom belongs into one water quality 
class we will use standardize normal distribution, express as: 
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The precision number is estimated by the Bayes classifier, together with the � and � for diatom and each WQC. The x value is inputted as discrete class terms, because 
of the ecological (uncertainty) nature of the diatom dataset, and the better 
performance reported by [11, 12]. The Naïve Bayes classifier algorithm was used 
from the WEKA machine learning toolkit [19]. The discrete class values are given 
below.  

3. Data description and experimental setup 

The datasets used in the experiments consist from 13 input parameters representing 
the TOP10 diatom species (diatom species that exist in Lake Prespa [2]) with their 
abundance per sample, plus the three WQC for conductivity, pH and Saturated 
Oxygen. Then one dataset is crated for each WQ class with the TOP10 diatoms. 

Table 1.  Water quality classes for the physical-chemical parameters [16, 17] 

Physical-
chemical 
parameters 

Name of the 
WQC 

Parameter 
range Name of the WQC Parameter 

range 

Saturated 
Oxygen 

oligosaprobous SatO > 85 �-mesosaprobous 25-70 

�-mesosaprobous 70-85 �-meso / 
polysaprobous 10-25 

pH 
acidobiontic pH < 5.5 alkaliphilous pH > 7.5 
acidophilous pH > 5.5 alkalibiontic pH > 8 
circumneutral pH > 6.5 Indifferent pH > 9 

Conductivity fresh Conduc < 20 brackish fresh 90 – 180  
fresh brackish Conduc < 90 brackish 180 - 900 
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These measurements were made as a part of the TRABOREMA project [6]. The 
WQCs are defined according to the three physical-chemical parameters: Saturated 
Oxygen [16], Conductivity [17] and pH [16, 17] which are given in Table 1. Among 
the input parameters 10 are numerical parameters and the rest 3 are nominal with a 
number of possible classes from 3 to 6.  

The experimental setup estimates the highest probability of diatom with water 
quality class. After the data is process by the algorithm, full classification model for 
each water quality class, then probability measured using normal distribution is 
estimated. The normal distribution takes as input value one discretised class term 
from the Table 2.  

Table 2.  Discretised input dataset into probability estimator 

Diatoms DTerm 1 – 
DT1

DTerm 2 – 
DT2

DTerm 3 – 
DT3

DTerm 4 – 
DT4

DTerm 5 – 
DT5

Bad Weak Good Very Good Excellent 
APED 0 3.25 6.5 9.75 13 
CJUR 0 21.5 43 64.5 86 
COCE 0 20.25 40.5 60.75 81 
CPLA 0 10 20 30 40 
CSCU 0 10.25 20.5 30.75 41 
DMAU 0 3 6 9 12 
NPRE 0 4.75 9.5 14.25 19 
NROT 0 6 12 18 24 

NSROT 0 7.75 15.5 23.25 31 
STPNN 0 5.25 10.5 15.75 21 

5. Experimental results 

In this section, three models are given for each water quality class, to show the 
probability estimates from the Naïve Bayes classification. Later the results from the 
classification models with the known ecological reference of the diatoms are verified. 

5.1 Interpretation of the classification models 

All the induced classification models have a define range of discretised class terms, 
which later will be commented. Each diatom for certain class has a probability 
estimate, which is important measure of indicator properties of the diatom. 

The results from the classification model for Conductivity water quality class are 
presented in Table 3. According to the classification model, the APED diatom is a bad 
indicator of brackish water with 99.73% of probability, while he is weak indicator of 
brackish fresh waters with probability of 14.46%. The model also identifies the APED 
diatom as good indicator of fresh brackish waters with probability of 5.35%, while the 
other estimates are very low. Similar conclusion can be made for all the TOP10 
diatoms. We will summarize just a few of them. For example, COCE diatom is weak 
indicator of brackish waters (2.18%), on other hand he is good indicator of brackish 
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fresh waters. According to the classification model the DMAU diatom is a weak 
indicator of brackish waters, while good indicator of brackish waters. 

Table 3.  Evaluation results from the classification model for Conductivity water quality class 

Diatoms Bad Weak Good Very Good Excellent 

Class brackish Brackish fresh 
fresh 

brackish 
fresh 

brackish 
fresh 

brackish 
APED 99.73% 14.46% 5.35% 0.60% 0.02% 

Class fresh brackish brackish brackish brackish 
Fresh 

brackish 
CJUR 99.73% 2.18% 0.00% 0.00% 0.00% 

Class fresh brackish brackish 
Brackish 

fresh 
Brackish 

fresh 
Brackish 

fresh 
COCE 99.73% 2.64% 2.13% 1.15% 0.29% 

Class fresh brackish Brackish fresh 
Brackish 

fresh 
Fresh 

brackish 
Fresh 

brackish 
CPLA 99.73% 0.37% 0.00% 0.00% 0.00% 

Class Fresh brackish brackish 
Brackish 

fresh 
Brackish 

fresh 
Brackish 

fresh 
CSCU 95.28% 6.09% 2.90% 0.44% 0.02% 
Class fresh brackish Brackish fresh brackish brackish brackish 

DMAU 99.73% 14.19% 5.40% 0.67% 0.03% 

Class fresh brackish 
Brackish  

fresh 
Brackish 

fresh 
Brackish 

fresh 
Brackish 

fresh 
NPRE 99.73% 14.50% 1.12% 0.01% 0.00% 
Class fresh brackish brackish brackish brackish brackish 

NROT 99.73% 12.07% 0.89% 0.01% 0.00% 
Class fresh brackish Brackish fresh brackish brackish brackish 

NSROT 99.73% 9.69% 0.60% 0.00% 0.00% 

Class fresh brackish Brackish fresh 
Brackish 

fresh 
Brackish 

fresh 
Brackish 

fresh 
STPNN 99.73% 10.81% 1.92% 0.06% 0.00% 
 
The STPNN diatom has weak indicator properties for brackish fresh waters, while 

the NROT diatom for brackish waters. It is interesting to note that the low indicator 
properties is not a of impropriate method for classification, but more to the quality 
and quantity of the data. This was concluded for this diatom dataset in experiments 
with previous methods [15]. The classification model, classified the diatoms as bad 
indicators, because most of the data contained values of diatoms abundance near 0. 
We have assumed that low abundance of certain diatoms is bad indicator of given 
water quality class, but it was unknown for which class. 

The evaluation results for the pH water quality class are presented in Table 4. From 
the model, it is easy to note that APED diatom is a good indicator of alkaliphilous 
waters, and weak indicator of alkalibiontic and bad indicator of circumneutral waters. 
NPRE diatom is bad indicator of acidophilous waters, but good to excellent indicator 
of acidophilous waters. NROT, NSROT and STPNN diatoms are good to excellent 
indicators of indifferent waters, but with low probability according the model. All the 

M. Gusev (Editor): ICT Innovations 2010, Web Proceedings, ISSN 1857-7288 
© ICT ACT – http://ictinnovations.org/2010, 2010 



26 Naumoski, Mitreski: Naive Bayes technique for diatoms classification 
 

diatoms more or less have around 15% probability to be good indicators of certain 
water quality class.  

Table 4.  Evaluation results from the classification model for pH water quality class 

Diatoms Bad Weak Good Very Good Excellent 
Class circumneutral alkalibiontic alkaliphilous alkaliphilous alkaliphilous 
APED 19.19% 14.16% 8.00% 2.51% 0.34% 
Class acidophilous alkalibiontic alkalibiontic alkalibiontic acidophilous 
CJUR 30.31% 3.24% 0.00% 0.00% 0.00% 
Class acidophilous Indifferent Indifferent alkaliphilous alkaliphilous 

COCE 1.55% 2.51% 2.38% 0.80% 0.17% 
Class Indifferent alkalibiontic alkalibiontic alkalibiontic alkalibiontic 
CPLA 95.46% 6.11% 0.14% 0.00% 0.00% 
Class Indifferent circumneutral alkalibiontic alkalibiontic alkalibiontic 
CSCU 99.73% 7.06% 3.82% 1.01% 0.09% 
Class circumneutral Indifferent acidophilous acidophilous acidophilous 

DMAU 14.08% 19.27% 7.75% 3.96% 1.24% 
Class acidophilous alkaliphilous alkaliphilous alkaliphilous alkaliphilous 
NPRE 99.73% 12.20% 3.60% 0.33% 0.01% 
Class acidobiontic Indifferent Indifferent Indifferent Indifferent 

NROT 99.73% 13.96% 2.70% 0.08% 0.00% 
Class acidobiontic Indifferent Indifferent Indifferent Indifferent 

NSROT 99.73% 10.00% 2.69% 0.13% 0.00% 
Class acidobiontic Indifferent Indifferent Indifferent Indifferent 

STPNN 99.73% 8.87% 0.79% 0.01% 0.00% 
 
Concerning the last water quality class – Saturated Oxygen, the results from the 

classification model (see Table 5) shows that the TOP10 diatoms have all bad 
indicator properties for the polysaprobous WQC class. 

Table 5.  Evaluation results from the classification model for Saturated Oxygen water quality 
class 

Diatoms Bad Weak Good Very Good Excellent 

Class Poly 
saprobous 

Oligo 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

APED 99.73% 14.89% 5.07% 0.42% 0.01% 

Class Poly 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

CJUR 99.73% 6.54% 0.16% 0.00% 0.00% 

Class Poly 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

COCE 99.73% 2.79% 2.15% 0.80% 0.11% 

Class Poly 
saprobous 

Poly 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

CPLA 99.73% 10.26% 1.54% 0.07% 0.00% 

Class Poly 
saprobous 

�-meso 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 
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CSCU 99.73% 6.82% 2.80% 0.39% 0.02% 

Class Poly 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

DMAU 99.73% 15.07% 6.33% 1.33% 0.11% 

Class Poly 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

NPRE 99.73% 13.25% 1.68% 0.03% 0.00% 

Class Poly 
saprobous 

Oligo 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

�-meso 
saprobous 

NROT 99.73% 12.29% 0.98% 0.01% 0.00% 

Class Poly 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

NSROT 99.73% 9.70% 0.74% 0.00% 0.00% 

Class Poly 
saprobous 

�-meso 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

Oligo 
saprobous 

STPNN 99.73% 9.78% 0.49% 0.00% 0.00% 
 
The APED diatom and the CPLA diatom, according the classification model are 

weak indicator of oligosaprobous water class, but good to excellent indicators for �-
mesosaprobous with very low probability. The CSCU, NPRE, NROT, NSROT and 
STPNN diatoms according to the models are weak to very good indicators of 
oligosaprobous waters. The rest of the diatoms are less or more weak to good 
indicators of �-mesosaprobous waters. Once more, the classification model has low 
values for the probability estimates, except for the first class. 

5.2 Verification of the results from the models 

Ecological references for the TOP10 diatom are taken from the latest diatom ecology 
publications [14], used in several recently published papers [1, 2, 4, 15], and database 
(European Diatom Database - http://craticula.ncl.ac.uk/Eddi/jsp/index.jsp). 
Concerning ecological reference of the TOP10 dominant diatoms in Lake Prespa, 
CJUR and NPRE are newly described taxa (diatoms) with no record for their 
ecological preferences in the literature. Therefore, some of the results from the 
classification models are the first known ecological reference for certain WQC 
classes. 

In the relevant literature APED diatom is known to be alkaliphilous, fresh-
brackish, nitrogen-autotrophic (tolerates elevated concentrations of organically bound 
nitrogen), high oxygen saturation (>75%), �-mesosaprobic and eutrophic (because of 
Organic N tolerance) diatom indicator [14]. According to the classification models the 
APED diatoms is found to be an alkaliphilous and fresh-brackish indicator. 
Regarding the Saturated Oxygen WQ classes, APED is a weak indicator of 
oligosaprobous, but good indicator of �-mesosaprobic environment. 

Concerning CSCU diatom indicator affinity, the model for pH WQC has revealed 
that this diatom is alkalibiontic. According to the models for conductivity WQ class 
the CSCU diatom is brackish to brackish fresh diatom, while the Saturated Oxygen 
WQC model shows the weak affinity of this diatom to �-mesosaprobous, but with 
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good indicator properties for oligosaprobous waters. In the relevant literature the 
CSCU is known as alkalibiontic, freshwater to brakish water taxon, being 
oligosaprobic indicators with eutrophic references [14].  

The COCE diatom is known as meso-eutro taxon [14], while concerning the pH 
properties of this diatom, there is no known ecological reference. According to the 
classification models, the COCE diatom is relative good indicator for brackish fresh 
waters, indifferent to alkaliphilous, and for the saturated oxygen demand he is a weak 
indicator of �-mesosaprobous but relatively good for �-mesosaprobous environments. 
Further experiments to investigate the trophic indicator affinity of this diatom should 
be made by using trophic state index classes.  

The STPNN diatom, in the literature is known as hyper-eutrophic (oligo-eutrophic; 
indifferent) taxon frequently found on moist habitats, while the classification models 
have been found to be alkalibiontic taxon. According to the classification models, this 
diatom is a weak to good indicator of brackish waters, while indifferent taxon for pH 
WQC. The model for the saturated oxygen showed that this diatom is weak indicator 
of �-mesosaprobous waters, but relatively good for oligosaprobous. 

The other ecological references for the rest of the diatoms are new and they have to 
be further investigated, before any solid conclusion is made. Nevertheless, many of 
the known ecological references are verified with the classification method, thus 
proving the reliability of the proposed method for diatom classification. 

6. Conclusion 

The proposed method has verified the known diatom ecological knowledge and for 
some of them, added a new knowledge. Classifying the diatoms from measure data 
can be greatly improved with the proposed method, not just from Lake Prespa, but 
from any lake ecosystem, since the geographical location plays no role in the bio-
indicator properties of certain diatom [13]. 

The experiments on diatom WQC datasets show that the Naïve Bayes method can 
be a good tool for diatom classification. For each of the defined WQ classes, the 
method has found a relationship between the diatoms and the indicator with certain 
probability. The input data in the proposed method is divided into classes, with 
labeled a term, associate with a define range. With this process, the classification 
accuracy of the proposed method is higher, based on the research work done 
previously on other datasets. Also, another fact is the changing ecosystem conditions, 
which adds a degree of uncertainty in the process of diatom classification. That’s way, 
we use the Naïve Bayes classifier, because estimates the probability of a diatom in a 
certain WQC class and reduces the uncertainty which is accompanied with the 
environmental data. 

More important is the interpretation of the classification models, compared with 
the classical statistical methods such as: PCA, CCA, DCA and other methods, used 
previously, the proposed method is more directly interpretable. The obtained models 
have openly stated prediction and probability in terms of finding correct diatom-
indicator relationship. The experiments showed that machine learning tools can 
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extract valuable knowledge in a relatively comprehensible form, even when the 
application area is so extremely complex for humans and the data are far from being 
perfect.  

We believe that studies like ours that combines the ecological together with 
information technologies, especially in the area of eco informatics, are necessary to 
provide understanding of the physical, chemical and biological processes and their 
relationship to aquatic biota for predicting a certain effect. Verification of the 
obtained models showed that the proposed method, have successfully classified 
certain known diatoms, and added new ecological knowledge for the unknown 
diatoms for certain WQCs. 

Further research needs to be focused on developing classification models base on 
the Naïve Bayes method for trophic state index classes. Other methods for 
classification could be suitable for diatoms classification that needs to be explored.  
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