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Abstract. The combination of light, temperature, conductivity, oxygen, nitrates 
and metals form a group of important stress environmental factors that influence 
on biodiversity. The last ones, the metals, several of these parameters are associ-
ated with agricultural and farming activities. Therefore, increased agricultural ac-
tivity could lead to disruption in biodiversity equilibrium, especially on ecosys-
tem like Lake Prespa. Discovering the right influencing factor on diatom biodi-
versity is the task that this paper aims to shade a light on. We plan to achieve this 
by using state of the art methods for machine learning. Since several metal pa-
rameters are influencing the diatom biodiversity, multi-target regression tree 
method is used. We investigate different strategies and we pick the best model(s) 
based on the experimental evaluation. The obtained models reveal that Na and 
Mg are the most influencing factors on the diatom biodiversity. Based on these 
results, further research based on this method for other abiotic stress factors could 
be made. 
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1 Introduction 

The biodiversity of the lake diatoms is influenced by many factors. Therefore, it is im-
portant to know the level of influence of these factors on the biodiversity of one or 
several organisms that form that community. The biodiversity is mathematical metric 
that measures the species diversity in the community. The distribution and the abun-
dance of plants and animals is represented using the biodiversity indices, incorporating 
the value of the spatial aspect. By knowing the properties of the ecosystem biodiversity, 
we can use methods and techniques to predict certain physico-chemical conditions that 
favour the particular arrangement of that species distribution. There are methods and 
techniques in the area of machine learning that build models, so-called biodiversity 
models, and they try to reveal the relationship between the biological information rep-
resented with the biodiversity indices, and the abiotic information known through the 
physico-chemical parameters information. These models are not possible to be made if 
the data at hand or the data that we use for modelling is obtained using measurements 
done in single point in time for a specific geographical area of interest. This kind of 
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modelling for a moment ignores the temporal aspects of the species distribution, but it 
can incorporate some temporal aspects that are important for learning the particular 
model. One example could be the average of the concentration of a particular metal 
over a time period before the observation.  

The biodiversity modelling is very similar to the habitat suitability modelling, but 
there is a difference. The biodiversity modelling contains “concentrated” biological in-
formation of the organisms that is related with the abiotic factors, while the habitat 
suitability models take into account the abundance of each single specie that compro-
mises that biodiversity. Both type of models relate the biological information with the 
abiotic parameters. In addition, there are two ways that the biological information can 
be related with the physico-chemical parameters: building models for each of the abi-
otic parameters (known as single target models), or to build a model that simultaneously 
predicts the influence of the entire set of environmental parameters (multi-target mod-
els). 

In this research paper, we build multi-target biodiversity regression models [1], since 
the output of the model is numeric value. If the output of the model is nominal, then 
these models would be multi-class classification models. We use the multi-target re-
gression trees to build models for the metal abiotic factors that influence on the diatom 
biodiversity, based on the occurrence of a particular diatom in a given time and space 
[2]. This method has several advantages over single target models, and was used suc-
cessfully in several studies [3, 4]. His main advantages includes building smaller mod-
els, faster learning of the target model and producing interpretable model that reveals 
the relationship between biodiversity indices and a set of abiotic factors. 

The data samples that compromise the data at hand used for obtaining the biodiver-
sity models are collected as a part of the EU funded project TRABOREMA (FP6- 
INCO-CT-2004-509177) [5]. This data contains information regarding the physico-
chemical information and in the same time information regarding the abundance of each 
collected diatom. The biodiversity information is calculated on the bases of the abun-
dance of the diatom community. In this particular research, we are interested in know-
ing the relationship only between the set of metal parameters and the biodiversity. This 
is because the metal parameters previously have shown strong relationship with the 
diatom community [6].  

The rest of this paper is organized as follows. In Section 2, we describe the algorithm 
for building multi-target regression trees. Section 3 describes the data and then we give 
a short explanation of the experimental design that was employed to analyse the data at 
hand. In Section 4, we present the obtained models and discuss them, followed by Sec-
tion 5 that gives the main conclusions. 

2 The Machine Learning Algorithm 

Before the models are obtained, the experiment has to be set up. The input of the ma-
chine learning method, in the case of biodiversity modelling of the diatom community, 
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is a set of metal abiotic factors. Therefore, the attributes correspond to the environmen-
tal variables describing the ecosystem conditions, and the output of the model is a vec-
tor of biodiversity indices. 

Accordingly, the machine learning task that we are doing is defined as follows. Input 
a set of data that the attributes of this dataset corresponds with the metal environmental 
variables, rows that corresponding to the spatial locations, and the output or the class 
attribute corresponds the target biodiversity of the diatom community. Therefore, the 
goal is to learn a predictive model that will reveal the target property from the metal 
abiotic factors. Since, we are looking for a degree of biodiversity and this is a numeric 
value, we are solving a regression problem. 

2.1 Multi-Target Regression Trees 

The method used to construct the biodiversity models or the multi-target regression tree 
is a generalization of the regression tree method. This is because the former can predict 
a value of multiple numeric attributes at one compare to the later [1]. Therefore, instead 
obtaining models with single prediction value, the used method is able to obtain model 
that predicts several values at once stored in a vector. Each vector element corresponds 
to a prediction of the target attributes. 

The model in a form of a tree is constructed [7] with a recursive partitioning algo-
rithm from a set of records. Usually the records are comprised from the measured values 
of the descriptive and target attributes. There are two parts in the process of learning 
the model; training and test selection procedure. These two selection procedures are 
using separate portions of the dataset. There are different strategies to separate the da-
taset, but one approach is to take 2/3 of the input dataset and use to train (learn) the 
model, and 1/3 of the input data to test the model to see how the model is behaving on 
unseen data. The test procedure is the most important step in the induction algorithm. 
This procedure includes heuristic function that is computed on the training data and 
selects each test for a given node. Using this function, the induction algorithms tries to 
get smaller trees with good predictive performance and reduces the model complexity. 
In order to construct multi-target regression biodiversity models, we use the CLUS 
software [8]. CLUS uses sum of inter-cluster variations [9] in the process of building 
the model as heuristic function for selection of the test. 

This allow the method to learn models with more accurate predictions. Additionally, 
the multi-target regression tree can be pruned with various metrics to improve predic-
tion accuracy, interpretability and reduce model complexity. Several different strategies 
are imposed on the model in this paper; maximum number of nodes (maxsize), maxi-
mum depth of the tree (maxdepth) and minimal records in a leaf (minleaf). Furthermore, 
in order to reduce the over-fitting of the models, we employ ‘F-test pruning’. This prun-
ing uses the statistical F-test [10] to check whether a given split reduces the variance 
significantly at a given significance level. This is done by making internal 10-fold 
cross-validation to select an optimal value for this parameter from a set of values. 
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3 Data Description and Experiments 

The data used for learning multi-target biodiversity models were collected during the 
EU project TRABOREMA and cover period of 16 months. Measurement policy was 
conducted on both lake and river sampling locations, and in total 275 water samples 
were acquired. From these measurements, 218 samples represent the lake water chem-
istry and diatoms’ abundances, while 57 reflect the river condition. The biologist con-
ducted both physico-chemical and biological analyses on these samples. 

The following physico-chemical properties of the water samples were measured: 
temperature, dissolved oxygen, Secchi depth, conductivity, pH, nitrogen compounds 
(NO2, NO3, NH4, inorganic nitrogen), SO4, and Potassium (K), Magnesium (Mg), 
Sodium (Na), Copper (Cu), Zinc (Zn) and Mangan (Mn). 

The biological information was contained in the relative abundances of the 116 dif-
ferent diatoms. For further details of the diatom collection procedure, the reader can 
refer to [11]. After collection, the samples were examined under microscope, and the 
number of diatom species is counted. Then the specific species abundances were stored 
in the database as a percent of the total diatom count per sample [12]. The diatoms’ 
abundances were converted and characterized with 9 biodiversity indices (Chao Rich-
ness, Hill N1, Hill N2, 1/Berger_Parker, 1/Simpson, 1/NewSimpson, Shannon, Bril-
louin, Margalef). In Table 1, the basic statistical information regarding the collected 
parameters and the biodiversity indices are given. 

Table 1. Basic statistics of the data on physico-chemical water properties obtained from the 
measurements: minimal value (Min), maximal value (Max), mean value (Avg) and standard de-

viation (Sd) for both lake and rivers datasets, seperatly. 

 Lake Rivers 
Abiotic and Bio-
diversity indices 

Min Max Avg Sd Min Max Avg Sd 

Na 0.75 13.15 4.36 2.1 0.71 8.89 2.09 1.32 
K 0.23 4.8 1.5 0.6 0.31 6.65 1.19 1.04 
Mg 1.11 19.45 5.7 2.8 0.22 9.63 2.5 2.5 
Cu 1.04 23.3 3.97 2.8 0.64 13.28 4.43 3 
Mn 0.87 230 7.88 16.8 1.04 79.3 16.51 19.25 
Zn 0.27 227.7 5.23 4.4 0.25 214.5 9.84 29.48 
Chao Richness 0 63.25 22.06 13.2 0 51 26.25 11.67 
Hill N1  1 25.17 9.62 5.76 1 31.52 15.4 7.14 
Hill N2 0 20.57 6.25 4.58 0 29.58 11.84 6.26 
1/Berger_Parker 0 11.11 3.08 2.11 0 16.67 5.78 3.22 
1/Simpson 0 33.15 6.94 5.6 0 41.6 13.96 8.17 
1/NewSimpson 0 20.57 6.25 4.58 0 29.58 11.84 6.26 
Shannon 0 3.22 1.97 0.91 0 3.45 2.5 0.92 
Brillouin 0 2.78 1.74 0.8 0 2.99 2.2 0.8 
Margalef 0 7.5 3.55 1.76 0 7.22 4.49 1.9 
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3.1 Experimental Design 

We learn two different type of models: (1) models that are based on the biodiversity 
information contained in the entire 116 diatoms in the community for lake stations, and 
(2) models based on biodiversity information in the diatom community for river sta-
tions. In both scenarios (lake and river datasets), the biodiversity indices are related 
with the metal abiotic factors. 

In order to increase the prediction accuracy of each model, to reduce model com-
plexity and over-fitting, we applied four different strategies: minleaf, maxdepth, 
maxsize and F-test. For minleaf we set the values of 2, 4, 8, 16 and 32; for maxdepth 
we set 3, 4, and 5, while for maxsize we set 7, 9, 11 and 13 [13]. For each model tree, 
the following set of values was used for the F-test: 0.05, 0.075, 0.1, 0.125, 0.25, 0.5, 
0.75, 1.0. From all these models, we select the ones that have better predictive power, 
complexity and lowest over-fitting. 

Finally, the test procedure that estimates the performance of the prediction model 
was assessed by using 10-fold cross validation. For comparison of the model predictive 
power, we used two different metrics: correlation coefficient (CC) and relative root 
mean squared error (RRMSE). 

3.2 Experimental Results 

We estimated the predictive power of every learned model for both training and testing 
data. Additionally, we compute and compare the CC and RMSE of all models obtained 
for each pruning strategy. In this paper, we present two models (for each dataset) that 
obtained best predictive performance results. For both lake and river measurements, the 
best pruning strategy was – minleaf 16.  

Table 2. Performance of multi-target regression tree (MTRT) for revealing the relationship be-
tween the biodiversity indices and the metal parameters on training data and unseen data using 
lake measurement data. Bolded results show the maximum accuracy based on CC and underlined 
results shows minimum error for RRMSE for each test. 

Biodiversity  
Indices 

MTRT MTRT Random Forest 
CC RRMSE CC RRMSE 
Train Test Train Test Train Test Train Test 

Chao Richness 0.48 0.29 0.880 0.967 0.71 0.28 0.707 1.024 
Hill N1 0.45 0.20 0.893 1.001 0.79 0.13 0.608 1.156 
Hill N2 0.40 0.16 0.917 1.009 0.77 0.08 0.633 1.186 
1/BergerParker 0.41 0.19 0.914 0.998 0.76 0.08 0.655 1.175 
1/Simpson 0.37 0.14 0.929 1.008 0.76 0.05 0.655 1.195 
1/NewSimpson 0.40 0.16 0.917 1.009 0.77 0.08 0.633 1.186 
Shannon 0.60 0.36 0.801 0.947 0.86 0.26 0.516 1.092 
Brillouin 0.60 0.37 0.798 0.947 0.86 0.27 0.516 1.091 
Margalef 0.58 0.35 0.818 0.950 0.83 0.27 0.552 1.076 
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Both tables (Table 2 for lake measurements and Table 3 for river dataset), presents 
the results from these evaluation experiments of the models based on these two metrics 
(CC and RRMSE). The experimental results in both tables show that finding the true 
relationship between the biodiversity indices and the metal abiotic factors is not very 
easy task. The performance of the models obtained on training data is relatively me-
dium, but if we compare the datasets, the lake dataset is more promising. Furthermore, 
if we inspect the results from the prediction (test) results, it is obvious that some of the 
biodiversity indices do not correlate with the metal abiotic factors. 

Table 3. Performance of multi-target regression tree (MTRT) for revealing the relationship be-
tween the biodiversity indices and the metal parameters on training data and unseen data using 
river measurement data. Bolded results show the maximum accuracy based on CC and underlined 
results shows minimum error for RRMSE for each test. 

Biodiversity  
Indices 

MTRT MTRT Random Forest 
CC RRMSE CC RRMSE 
Train Test Train Test Train Test Train Test 

Chao Richness 0.13 0.08 0.991 1.008 0.52 0.02 0.854 1.093 
Hill N1 0.30 0.00 0.953 1.024 0.77 0.08 0.637 1.096 
Hill N2 0.30 0.03 0.956 1.030 0.80 0.08 0.598 1.102 
1/BergerParker 0.21 0.03 0.977 1.024 0.77 0.10 0.637 1.081 
1/Simpson 0.30 0.01 0.955 1.029 0.82 0.06 0.571 1.113 
1/NewSimpson 0.30 0.03 0.956 1.030 0.80 0.08 0.598 1.102 
Shannon 0.12 0.22 0.993 1.021 0.63 0.00 0.775 1.111 
Brillouin 0.11 0.25 0.994 1.020 0.63 0.00 0.779 1.111 
Margalef 0.24 0.01 0.970 1.014 0.67 0.04 0.747 1.097 

 
In order to prevent over-fitting of the predictive models, we set the F-test pruning 

strategy starting from 0.05. This stopped the models to have large difference between 
the training and test performance. Most of the models obtained values between 0.05 
and 0.1. We also performed experiments in order to know how much we can improve 
the predictive performance, so we made tests using one ensemble method (random for-
est) that is one of the top performing methods for predictive modelling [14]. Overall, 
the descriptive models (models that are obtained using training data) obtained using the 
random forest method have better performance for both datasets, but the predictive per-
formance for both datasets are lower than the predictive performance of multi-target 
tree. 

4 Biodiversity Models 

We used the methodology described in Section 2, based on the description of the ex-
perimental setup in Section 3.1, and we used the biodiversity data that contain infor-
mation regarding the biodiversity indices and the metal abiotic factors for both lake and 
river sites. During the process of learning the models, we used the settings described in 



 7 

previous section and we obtained two multi-target regression tree models for each da-
taset with best predictive performance. Both models were learned using minleaf 16 
strategy. In this way, we obtained two predictive models that describe the influence of 
the set of metal measured parameters on all biodiversity indices taken into account. 

4.1 Models for the Lake Measurements 

Fig. 1 presents a predictive tree model that relates the biodiversity indices relative to 
given metal environmental condition. In the nodes of the tree, we can distinct four dif-
ferent clusters that correspond to four different biodiversity scenarios. The most obvi-
ous is the root of the tree that depicts the most influencing factor on the biodiversity 
indices: Na (sodium) and Mg (magnesium) as well as the K (potassium) component. 

From the four biodiversity scenarios, two different clusters emerging from the 
model; one cluster where the biodiversity indices have very similar values and have 
much higher results than the second cluster, where biodiversity indices have very low 
values. Table 1 gives us a reference point from which we can estimate the suitable 
conditions for the lake diatom biodiversity. Consequently, it is obvious that the third 
cluster from left to right is the cluster that depicts the environmental conditions that are 
not in favour of diatom biodiversity. For values of sodium larger than 5.2 mg/dm3, 
magnesium lower than 7.28 mg/dm3 and potassium lower than 1.605 mg/dm3, the dia-
tom biodiversity is very low for all indices. This is very important result from the model, 
because a set of metal abiotic conditions was found under which all the biodiversity 
indicators have low or high values. 

 
Fig. 1. Multi-target regression tree obtained using lake station measured data with minleaf 16 

pruning strategy 

 



ICT Innovations 2016 Web Proceedings 
 

8 

The results from the presented model realistically depicts the relationship that metals 
have with the diatom biodiversity in Lake Prespa. According to [6], the most important 
environmental factors on the diatom community are the metal parameters – Cu, Mn and 
K. The explanation of the interconnection between these parameters in the diatom com-
munity is more complicate to explain. Due to the complexity of the interaction of the 
nutrients, diatoms and the influencing factors it is difficult to give single conclusion 
based on several models. Therefore, the obtained model deserves further attention and 
investigation, i.e., more broadly conducted research on these relationships. 

4.2 Models for the Rivers Measurements 

Using a similar approach as for the lake measurement model, the multi-target regres-
sion tree model for the river measurements depicts the influence of the river chemistry 
on the diatom biodiversity. Fig. 2 depicts the influence of a single metal abiotic factor 
on the biodiversity indices.  

 
Fig. 2. Multi-target regression tree obtained using lake station measured data with minleaf 16 
pruning strategy 

Compared with the model presented in Fig.1, here the two clusters/leafs of the model 
do not find any big difference of the biodiversity indices values. Therefore, it is very 
difficult to distinct the degree on which the value of influence factor, in this case the 
Zn (zinc), is influencing the river diatom biodiversity. Although it is very interesting to 
compare the findings in [14], where the Zn parameters influence the biodiversity of the 
entire lake. The models presented in [14] does not include the data from the river meas-
urements. This could imply that the Zn influencing factor found in [14] could have 
source from the river tributaries. Thus, the obtained models deserve further investiga-
tion and attention. 

5 Conclusion 

In this paper, we learned several environmental models using machine learning meth-
odology, in particular multi-target regression trees, that model the metal abiotic influ-
ence of the diatom biodiversity in Lake Prespa and its tributaries. We modelled biodi-
versity indices from two diatom communities (one found in lake and one in rivers) that 
have different structure and different environmental preferences. 
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If we observe the obtained multi-target regression trees, we can recognise the con-
ditions that increase or decrease the biodiversity of the diatom community, and we can 
relate them with the biodiversity indices of other measurements (lake vs rivers), and 
then we can see how the studied objects influence each other. Furthermore, using the 
multi-target regression trees, we identified for lake measurements conditions in which 
biodiversity is low or high. Someone can criticize these biodiversity models on a ground 
that these models do not include all the information from the interaction of the diatoms 
itself. Yet, the models successfully completed their mission and were in line with the 
known ecological preferences of the diatom tax found in Lake Prespa. Even the research 
area is complex, the multi-target regression tree was able to give an inside look of the 
complex interlocked relationships between the diatom biodiversity and the metal abi-
otic factors. For further work, we plan to model the diatom biodiversity indices with 
some other abiotic parameters that are important for the diversity of the community. 
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