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Abstract. The parallel system can be regarded as a multi-state system with 
graduate failure. When the system is not in its perfect state, it can be repaired to 
some higher level under some cost, in our case, to repair k components costs C0
+ kC1. The objective of this research is to find the optimal repairing policy, so 
that the system makes the greatest possible profit. The main idea of the optimal 
solution is based on the analysis of the system performance during periods with 
a certain length, which allows us to use dynamic programming as optimizing 
technique.  Additionally for the systems with unlimited working time we give a 
way for computation of the optimal repairing level. 
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1  Introduction  

Consider a parallel system with n independent components, so that each can be in 
either working or failure state. Some examples of such system are equal machines in a 
factory that do the same work, computers in the laboratory, buses in a transportation 
company or n-triple transportation line. The cost to repair a failure component does 
not always depend only on the bill for individual repairing, but sometimes there are 
additional penalties that need to be paid like a transportation expenses or some influ-
ences on the system as a result of system reconstruction. For that reason, we assume 
that making a collection of recovers takes constant price C0 and recovering of indi-
vidual component takes come expected cost C1. The whole system can be regarded as 
a multi-state system, so k effective operating components can be regarded as a system 
working in level k. During the operation some of the components may fail and we 
assume that the random variable “time to failure” of each component has exponential 
distribution with parameter λ. Since the our assumption is that components are inde-
pendent, one level transition intensities can be regarded as independent Markovian 
transitions. If in the inspection there are failed components, we may decide to recover 
some of them. The objective here is to decide on which level it is best to get the sys-
tem, thereby obtaining the maximal future operating profit.  
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A similar machine replacement problem is given in [1], where the problem is 
solved by using dynamics programming, so, here we are led by the same idea.  The 
similar computations of the optimal policy for another type of multi-state systems are 
given in [3] and [4], where it is found that when the system works long enough there 
is a level on which the optimal profit is obtained, whenever the system is repaired 
when it is found under that level. On that line, we concentrate on analyzing the exis-
tence of such level.  

2 The Optimal Policy for Constant Time Periods 

Consider a system that operates m time periods with length T. During a period of 
operation some of the components may fail, i.e. the state of the system can become 
worst. We assume that at the start of each period, we know the state of the system and 
we must choose to let the system operate one more period in the state it currently is or 
repair k of the components for a cost C0 + kC1. Also we assume that the expected 
operating profit each component makes when it is in the working state for a unit of 
time is known and we will denote it by C.  The problem we regard is to find the opti-
mal policy for system repairing in order to obtain the benefit of bigger future operat-
ing profit.  

To solve the problem using dynamics programming we need to identify it optimal 
substructure. Let )(~

miC  be the expected future optimal profit the system makes in the 
next k periods of length T, under assumption that it started in state i and at the begin-
ning of the time interval mT the failure components are not repaired. By )(ˆ miC we 
will denote the expected future optimal profit the system makes in the next k periods 
of length T, under assumption that it started in state i. The problem has the following  

Optimal substructure: For all 0 ≤ k ≤ n
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Next in this chapter we will show that (2) can be simplified. It is clear that 
∀m, )(~)(ˆ mCmC nn = , so we are concentrating on computation )(ˆ mCk  for k < n.  
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riod it is in failure state (and it is not repairing) is 0)1(~

0 =C , and if at the beginning 
of the period it is in working state is equal to  

λ

λλλλλ )1(

0
)1(1

~ TeCT
dtteCt

T
dtteCTC

−−
=	 −+	

∞ −= .           

508          ICT Innovations 2012 Web Proceedings ISSN 1857-7288

           S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288 
                                               © ICT ACT – http://ictinnovations.org/2012, 2012



It is easy to conclude that the expected profit k component makes in time T if at the 
beginning of the period all of them are in working state is equal to 

.)1()1(~
λ

λTekC
kC
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=

We will say that an n-component system is profitable if it is feasible to be repaired 
when all components are in the failure state. It means that there is a period m and 
number of components k such that 

.0)()(~
10 ≥+− kCCmCk

For an n-component profitable system we have that there is a integer m such that 
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By m̂  we will denote the smallest integer such that (3) holds. 

Proposition 2.1 ∀m ∈ N+, mm ˆ<  and nk ,0=∀ , 
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Lemma 2.1 For all positive integers k and m, such that mm ˆ≥ , 11 )(ˆ)(ˆ CmCmC kk ≥−+ . 

Proof: If kkCkkCmCmC kk >−+−= '),)'(()(ˆ)(ˆ
10' , the Lemma is true since 
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Now let )(~)(ˆ mCmC kk = . The lemma is true for mm ˆ=  since  
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Theorem 2.1: Suppose that for some m∈N, there is k’ > k such that 

))'(()(ˆ)(ˆ
10' CkkCmCmC kk −+−= . (5) 

and k’ is the greatest integer that satisfied (5), then k’ = n.  

Proof: Let k’ < n, then using Lemma 2.1 
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So k’ is not the greatest integer for which (5) holds, which is contradiction. So, k’=n. 

The last Theorem simplifies the formula (2) to 
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Theorem 2.2 Let k < n be an integer such that ))(()(ˆ)(ˆ
10 CknCmCmC nk −+−= .  
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For k’ = k – 1, using the proof of Lemma 1 we have 
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By induction we have that the theorem holds for all k’< k.           

The last Theorem tells us that at the beginning of each time interval mT, there is a 
level k ≤ n, so that for all levels smaller then k the optimal policy is obtained by re-
pairing all the failure components and all the levels bigger and equal to k, the optimal 
policy is obtained when the failure components are not repaired. We will call this 
level boundary level for m-th step. 

3  The Algorithm for Evaluation of the Optimal Repairing 
Policy 

Using the earlier analysis we can construct an algorithm for evaluation of the optimal 
repairing policy, that takes O(mn). The psevdocode of the algorithm is 
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     It is interesting that in the most of the experiments we made, for different   bound-
ary level for m-th step grows as m grows up, and there is some boundary level for 

∞→m . But there are some examples in which for some particular levels m and m + 1 
the boundary level for m-th step is greater then the boundary level for m + 1-th step. 
Next we give such an example. 

Example 3.1 Let λ = 1 e-T = 0.4545, C = 20.18, C0 = 10, C1 = 6, n = 2. For m = 1 
016.0)2()1(ˆ)1(ˆ

1020 =+−= CCCC  and 008.11)1(~)1(ˆ
11 == CC  so the boundary level is 0. 

The boundary level for m = 2 is 1 since 028.10)2()2(ˆ)2(ˆ
1000 =+−= CCCC  and 

028.16)()2(ˆ)2(ˆ
1021 =+−= CCCC . But, the boundary level for m = 3 is 0 again be-

cause 5638.17)2()3(ˆ)3(ˆ
1020 =+−= CCCC  and 7621.23)3(~)3(~

11 == CC . At the next 
steps, the boundary level remain at 0.  

4 Boundary level for a system with unlimited working time 

This boundary levels we get in our experiments, inspired us to make an additional 
analyzing in order to realize the existence of a boundary level when the working time 
of the system is unknown and we believe that that time is unlimited.  

Again we regard a parallel system with n independent components so that the prof-
it each component makes, if it is in the working state for a unit time, is C and the re-
pairing cost for k components cost C0 + kC1. 

Theorem 4.1 Suppose that whenever the system fails to level s, it is repaired to level 
k. Then the expected mean profit of such system is equal to 
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Moreover, the maximal expected mean profit is obtained in the case when k = n. 

Proof. If the system starts with its work in state i, then the expected time to work in 
level i is equal to (iλ)-1. The expected transition time from level k to level s is  
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 To repair it to level k

costs C0 + (k – s)C1. So, the expected mean cost is equal to 
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In order to proof the second stage of the theorem, we will show that the expected 
profit when the system is repaired to level k + 1 is greater then the expected profit 
when the system is repaired to level k, whenever it falls to level s, i.e. we will show 
that the following inequality is true 
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, the system is unprofitable i.e. it is not profitable to repair it. So we 

will regard only the systems for which 1
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λ

. Our goal is to find the level s for 

which the mean expected profit will be maximal. To do this we need to compare prof-
its 

1,snP  and 
2,snP  for all 0 ≤ s1, s2 < n. The next Theorem gives the boundary for  C/λ

that under which snrPP rsnsn −<<> + 0,,, .            
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Theorem 4.2 For all ns <≤0  and snr −<<0  , rsnsn LL +> ,,  if 

.
11)(

1
1

,

11

1
1

0
rssn

si

rs

si

rs

si B

i
r

i
sn

i
C

C

C
A +

+=

+

+=

+

+= =
−−

<�
�
�

�
�
� −=

��

�
λ

                         (7)

Proof. By simple transformation the inequality rsnsn LL +> ,, becomes  

.
1)(1))((

11

10

11

11

λ
C

CC

i
sn

i
rsn

ii
n

rsi

n

si

n

rsi

n

si >+

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−+−

−

��

��

++=+=

++=+=

Using ���
+

+=++=+=

=−
rs

si

n

rsi

n

si
iii 111

111  we get ,10, λ
C

CCB rss >++  which is equivalent with (7). 

Proposition 4.1 ∀s, r, k such that 0 ≤ s, r, k and s + r + k < n, .)(,, krssrss BB +++ <

Proof: By simple transformation )(,, krssrss BB +++ <  becomes  

.11)(11)(1)(1

111111
�
�
�

�
�
�
�

�
−−�

�
�

�
�
�
�

�
<�

�
�

�
�
�
�

�
+−−�

�
�

�
�
�
�

�
������

+=

+

+=

++

+=+=

++

+=

+

+=

n

si

rs

si

krs

si

n

si

krs

si

rs

si
i

r
i

sn
ii

kr
i

sn
i

It is easy to see that after multiplication of the both sides, the first terms will be equal. 
So this inequality is equivalent with 
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The last inequality holds because for all i and j, i ≤ s + r < j ⇔ 1/j < 1/i.

Proposition 4.2 For all 0 < s < n, .1,,1 +− < ssss BB

Proof: We need to proof that
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Using last two propositions we can prove the following theorem that characterizes the 
optimal repairing level.                  

Theorem 4.1 Let 
n

B
1

0,1 =− , ∞=+1,nnB  and 1, +ssB  are defined as in Theorem 4. Then 

if 1,,1 +− <≤ ssss BAB , the maximal profit is obtained when all failed components are 
repaired whenever the parallel system is found at level s.  
Proof. Using Proposition 1 we have kssss BBA ++ ≤< ,1, , for all k, 1 ≤ k ≤ n – s. From 
Theorem 3 we have that for all k, 1 ≤ k ≤ n – s Ln,s > Ln,s+k.  

From the other side, since AB ss ≤− ,1 , from the Proposition 2 we have that for all 1 ≤
k ≤ s, AB ksks ≤+−− 1, . Using Theorem ? we have that Ln,s-k < Ln,s-k+1, for all 1 ≤ k ≤ s. 
This imply Ln,s > Ln,s-k, for all 1 ≤ k ≤ s.  

From the last two theorems, in order to find the optimal repairing level we need to 
calculate all Bs-1, s for 0 ≤ s ≤ n. These numbers grow as s grows up, so we need to 
find the interval in which A belongs. If it is found on the interval (Bs-1,s, Bs,s+1), then 
we will conclude that the maximal mean profit will be obtained if the system is re-
paired in the moment when it is found at level s. These intervals are given in Fig. 1. 

Exampl� 4.1 Consider a system with 4 components. The boundaries are B-1, 0 = 1/4, 
B0, 1 = 12/23, B1, 2 = 6/5 and B2, 3 = 4. Let C0=3 and C1 = 1. Then for C/λ = 1.5, A = 
0.167 so unprofitable. For C/λ = 2, A = 0.33 so the optimal repairing level is 0. For 
C/λ = 6, A = 0.67 so the optimal repairing level is 2. For C/λ = 15, A = 4.67 so the 
optimal repairing level is 3. 
 The same result we obtained experimentally.  The operation of such system during 
the time T1, much greater than T, was simulated. Whenever the system enters the 
specific level k, it is repaired to the level s, ∀s > k. The optimal profit was always 
received for s = n and the optimal level matches with the theoretical results. 

Fig. 1. Decision intervals. 

B- B0, Bn-

Level 0 Level 1 Level n-1 Level nunprofitable
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We can design an O(n) algorithm for calculating the boundaries and finding the op-
timal repairing level. 

Input: C0, C1, C, n, λ. 
Output: if the system is profitable, the optimal repairing 
level, else the message that the system is not profitable 
A=(1/C0)(C/λ- C1)  
if A < 1/n then print “the system is unprofitable” else 

S = 1/n 
s = n-1 

 while A<=(1/(s+1))/( (n-s)/(s+1)-S) and s>=0 do 
  S = S+1/(s+1); 
  s=s-1; 
if s ≠ -1 then print “the optimal repairing level is” s+1. 

5 Conclusion 

This paper deals with operating process of a parallel n-component system. The objec-
tive is to find the level to which the system with k efficiently operating components at 
the beginning of each considering time needs to be repaired, or to make decision to 
left it at the current state, in order to obtain the maximal future operating profit. We 
regard two types of systems. For the first type we assume that at the start of each pe-
riod we know its state and only in that moment we are able to repair some of its com-
ponents. For such systems, we showed that in order to obtain the optimal future op-
eration profit, at the beginning of each period we need to make decision only between 
two choices, to repair all failure components or to left the system operate one more 
period in its current state. Moreover, it is shown that there is a boundary level under 
which the optimal policy is obtained if we leave the system in its current state. The 
current state for the second type of systems is known at any moment during their op-
eration, which also allows us to make decision to repair its components in each mo-
ment. It is shown that there is a level k under which it is not profitable to fail, i.e. that 
the optimal mean profit is obtained if all failure components were repaired whenever 
the systems takes that level k. 
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