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1 Introduction

We construct quasigroup-based hybrid of a code and a cipher and give an algo-
rithm that describes this construction. Some results presented in this paper are
taken from [18].

Hybrid idea is sufficiently known, see, for example, [16], [17]. Following Mar-
kovski, Gligoroski, and Kocarev [9], [10], we name such hybrid as a cryptcode.

Author chooses ”example” style for this paper in order to make it accessible
for engineers and students.

Definition 1. A T -quasigroup (Q,A) is a quasigroup of the form A(x, y) =
ϕx+ψy+c, where (Q,+) is an abelian group, ϕ, ψ are some fixed automorphisms
of this group, c is a fixed element of the set Q [8], [15].

Theorem 1. A T -quasigroup (Q, ·) of the form x · y = αx + βy + c and a T -
quasigroup (Q, ◦) of the form x ◦ y = γx+ δy+ d, both over a group (Q,+), are
orthogonal if and only if the map α−1β− γ−1δ is an automorphism of the group
(Q,+) [14].

Denote elements of the group Z2⊕Z2 as follows: {(0; 0), (1; 0), (0; 1), (1; 1)}.
The group Aut(Z2 ⊕ Z2) consists of the following automorphisms:

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)

Denote these automorphisms by the letters ε, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, respectively.
Notice that ϕ2

2 = ϕ2
3 = ϕ2

4 = ε, ϕ2
5 = ϕ6, ϕ

2
6 = ϕ5. It is known that

Aut(Z2 ⊕ Z2) ∼= S3 [6], [7].
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For convenience we give Cayley table of the group Aut(Z2 ⊕ Z2).

· ε ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ε ε ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ϕ2 ϕ2 ε ϕ5 ϕ6 ϕ3 ϕ4

ϕ3 ϕ3 ϕ6 ε ϕ5 ϕ4 ϕ2

ϕ4 ϕ4 ϕ5 ϕ6 ε ϕ2 ϕ3

ϕ5 ϕ5 ϕ4 ϕ2 ϕ3 ϕ6 ε
ϕ6 ϕ6 ϕ3 ϕ4 ϕ2 ε ϕ5

Information on codes can be found in [4].

2 Construction

Code part. We shall use a code given in [13, Example 19]. Let’s suppose that
the symbols x, y are informational symbols, and the symbol z is a check symbol.
Remember x, y, z ∈ (Z2 ⊕ Z2). We propose the following check equation x +
ϕ5y + ϕ6z = (0; 0), i.e., we set the following formula to find the element z:

z = ϕ5x+ ϕ6y (1)

Recall, statistical investigations of J. Verhoeff [19] and D.F. Beckley [2] have
shown that the most frequent errors made by human operators during data
transmission are single errors (i.e. errors in exactly one component), adjacent
transpositions (in other words errors made by interchanging adjacent digits, i.e.
errors of the form ab→ ba), and insertion or deletion errors. If all codewords are
of equal length, insertion and deletion errors can be detected easily.

Twin error is an error of the form (aa→ bb). In [13] it is proved the following

Theorem 2. Any (n− 1)-T-quasigroup code (Q, g) with check equation

d(xn1 ) = α1x1 + α2x2 + · · ·+ αnxn = 0

detects:

– any transposition error on the place (i, i + k), (i ∈ 1, n− k, k ∈ 1, n− i,
i + k ≤ n) if and only if the mapping αi − αi+k is an automorphism of the
group (Q,+);

– any twin error on the place (i, i+ k), (i ∈ 1, n− k, k ∈ 1, n− i, i+ k ≤ n) if
and only if the mapping αi + αi+k is an automorphism of the group (Q,+).

From Theorem 2 follows that the proposed code detects any transposition
and twin error. The proposed code is quasigroup code, therefore it detects any
single error [12], [13].

Suppose we have a word of the form ab, a, b ∈ Z2 ⊕ Z2. There exist 3 · 3 = 9
double errors that can be done in this word. It is easy to see that given code
detects 6 errors and it cannot detect 3 double errors.

Thus this code detects 12 from theoretically possible 15 errors in any word
of the form ab, a, b ∈ Z2 ⊕Z2, i.e., it detects 80% errors in information symbols
by supposition that the check symbol was transmitted without error.
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Cryptographical part. We construct cryptographical part of the proposed
cryptcode. For this aim we take three T -quasigroups over the group Z2 ⊕ Z2:

(Z2 ⊕ Z2, D) with the form D(x, y) = ϕ3x+ ϕ6y + a1;
(Z2 ⊕ Z2, E) with the form E(x, y) = ϕ2x+ ϕ5y + a2;
(Z2 ⊕ Z2, F ) with the form F (x, y) = ϕ3x+ ϕ5y + a3.

Lemma 1. The quasigroups (Z2 ⊕ Z2, D), (Z2 ⊕ Z2, E), and (Z2 ⊕ Z2, F ) are
orthogonal in pairs.

Proof. We can use Theorem 1 and Cayley table of the group Aut(Z2 ⊕ Z2).

Define three ternary operations:

K1(D(x, y), z) = D(x, y) + z

K2(E(x, y), z) = E(x, y) + z

K3(F (x, y), z) = F (x, y) + z

It is clear that these operations can be replaced by a more complex system
of operations.

Lemma 2. The triple of ternary operations K1(x, y, z),K2(x, y, z),K3(x, y, z)
forms an orthogonal system of operation.

Proof. We solve the following system of equations⎧⎪⎨
⎪⎩
ϕ3x+ ϕ6y + a1 + z = b1

ϕ2x+ ϕ5y + a2 + z = b2

ϕ3x+ ϕ5y + a3 + z = b3

(2)

where b1, b2, b3 are fixed elements of the set Z2 ⊕ Z2.
We use properties of the groups (Z2 ⊕ Z2) and Aut(Z2 ⊕ Z2):⎧⎪⎨

⎪⎩
ϕ3x+ ϕ6y + z = b1 + a1

ϕ2x+ ϕ5y + z = b2 + a2

ϕ3x+ ϕ5y + z = b3 + a3

(3)

We do the following transformations of the system (3): (first row + third row)
→ first row; (second row + third row) → second row; and obtain the system:⎧⎪⎨

⎪⎩
y = b1 + a1 + b3 + a3

x = ϕ4(b2 + a2 + b3 + b4)

ϕ3x+ ϕ5y + z = b3 + a3

(4)

In the third equation of the system (4) we replace x by ϕ4(b2 + a2 + b3 + b4)
and y by b1 + a1 + b3 + a3, obtaining:⎧⎪⎨

⎪⎩
x = ϕ4(b2 + a2 + b3 + a3)

y = b1 + a1 + b3 + a3

z = b3 + a3 + ϕ5(b1 + a1 + b2 + a2)

(5)
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Therefore, the system (2) has a unique solution for any fixed elements b1, b2, b3 ∈
(Z2 ⊕ Z2), operations K1(x, y, z),K2(x, y, z),K3(x, y, z) are orthogonal.

Triplets of orthogonal operations K1(x, y, z),K2(x, y, z),K3(x, y, z)
(by a1 = a2 = a3 = (0; 0)) define on the set Q 3 permutation with the fol-
lowing cycle type: 12214172141281, i.e., this permutation contains two cycles of
order 1, one cycle of order 2, and so on. Denote this permutation by the letter
K.

The order of permutation K is equal to 28. Notice that using isotopy [3], [11]
or generalized isotopy [14] it is possible to change the order of permutation K.

We shall use the system of three ternary orthogonal groupoids (Q,A), (Q,B),
(Q,C) of order 4 from [5].

In these tables A(0, 1, 2) = A0(1, 2) = 3, C(2, 3, 2) = C2(3, 2) = 2, and so on.

A0 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

A1 0 1 2 3
0 1 0 3 2
1 0 1 2 3
2 3 2 1 0
3 2 3 0 1

A2 0 1 2 3
0 2 3 0 1
1 3 0 1 2
2 0 1 2 3
3 1 2 3 0

A3 0 1 2 3
0 3 2 1 0
1 2 3 0 1
2 1 0 3 2
3 0 1 2 3

B0 0 1 2 3
0 3 0 1 3
1 0 2 3 0
2 1 2 1 3
3 1 1 2 2

B1 0 1 2 3
0 2 1 1 0
1 2 3 3 0
2 0 2 1 3
3 0 0 3 1

B2 0 1 2 3
0 1 2 0 0
1 2 0 3 1
2 0 2 3 2
3 3 2 1 1

B3 0 1 2 3
0 3 3 2 2
1 0 1 2 1
2 0 2 0 3
3 3 1 0 3

C0 0 1 2 3
0 3 1 2 0
1 2 1 1 2
2 0 1 0 1
3 3 1 2 3

C1 0 1 2 3
0 1 2 1 3
1 1 2 3 1
2 0 2 2 0
3 1 3 1 1

C2 0 1 2 3
0 3 3 0 0
1 2 1 0 1
2 3 3 2 0
3 3 0 2 3

C3 0 1 2 3
0 2 1 0 0
1 2 0 2 3
2 3 3 2 0
3 2 0 0 3

Denote permutation that defines this system of three ternary orthogonal
groupoids by the letterM ,M =M(A(x, y, z), B(x, y, z), C(x, y, z)). This permu-
tation has the following cycle type: 11171201261. The order of this permutation
is equal to 17 · 20 · 13 = 4420.

In order to use the system of orthogonal groupoids and the system of orthog-
onal T -quasigroups simultaneously we redefine the basic set of the T -quasigroups
in the following (non-unique) way: (0; 0)→ 0, (1; 0)→ 1, (0; 1)→ 2, (1; 1)→ 3.

We propose the following cryptographical term (a cryptographical primitive):

H(x, y, z) =Mk(Kl(x, y, z)), k, l ∈ Z (6)

The transformation H is a permutation of the set Q3. Indeed, this transfor-
mation is a composition of two permutations: K l and Mk.

Remark 1. It is possible to use the following cryptographical procedure:

H1(x, y, z) = Kt(Mk(Kl(x, y, z))), t, k, l ∈ Z,

and so on.
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3 Algorithm

We propose the following

Algorithm 1 1. Take a pair of information symbols a, b ∈ (Z2 ⊕ Z2);
2. using formula (1) (or its analogue), find value of the check symbol c;
3. apply the cryptographical term H to the triple (a, b, c);
4. therefore, we obtain first three elements of the cipher-text;
5. take a pair of information symbols d, e ∈ (Z2 ⊕ Z2);
6. using formula (1), find value of the check symbol f ;
7. change values of the numbers k, l in the cryptographical term H; also it is

possible to change the term H by other term of such or other type;
8. apply the cryptographical term H to the triple (d, e, f);
9. we obtain next three elements of the cipher-text;

10. and so on.

Remark 2. At Step 7 of Algorithm 1 it is possible to use ideas of Feistel schema.
Namely, it is possible to calculate the numbers k, l using some bijective functions,
where the numbers of triplet H(a, b, c) and previous values of k and l are used
as arguments.

Decoding. Using permutations K−1 andM−1, we can construct corresponding
triplets of orthogonal 3-ary groupoids and so on.

Resistance relative to some possible attacks. Taking into consideration
Remark 1, we can estimate the number of possible keys in the presented crypt-
code. This number is equal to (64!). Length of any key is equal to 64 · 3 · 2 = 384
bits.

At each step of the proposed algorithm only three symbols (six bits) are
ciphered. Moreover, after any step this key can be changed. Therefore, brute-
force attack is difficult.

Statistical attack also seems to be difficult. It is possible to present the fol-
lowing argument: the symmetric group S64 acts on the set, which consists from
64 triplets 64-transitively [7].

A code-crypt algorithm. Denote the coding procedure from Algorithm 1 as
C(x, y) since this procedure is a function of two variables. Therefore, we can
describe procedures of coding and enciphering in Algorithm 1 by the following
formula:

H(x, y, C(x, y)), (7)

where H is taken from equation (6). It is possible to construct a code-crypt
algorithm by the formula C1(H(x, y, z)) since there exists a possibility to use an
analogue of the code C for three information symbols [13, Example 19], i.e., we
can transpose the procedures C and H.
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Conclusion. Almost all constructions in this paper are performed over the field
GF (22). An analog of Algorithm 1 can be constructed over a field of the order
more than four. Also we can use an alternating more powerful code [1].
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15. Němec, P., Kepka, T.: T-quasigroups, I. Acta Univ. Carolin. Math. Phys. 12(1),
39–49 (1971).

16. Shcherbacov, V.A.: Elements of Quasigroup Theory and Some Its Applica-
tions in Code Theory, (2003). urls: www.karlin.mff.cuni.cz/drapal/speccurs.pdf;
http://de.wikipedia.org/wiki/Quasigruppe

17. Shcherbacov, V.A.: On Some Known Possible Applications of Quasigroups in
Cryptology (2003). www.karlin.mff.cuni.cz/drapal/krypto.pdf

18. Shcherbacov, Victor: Quasigroup Based Crypto-Algorithms. arXiv:1110.6591v1
(2012). http://arxiv.org/pdf/1201.3016v1.

416          ICT Innovations 2012 Web Proceedings ISSN 1857-7288

           S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288 
                                               © ICT ACT – http://ictinnovations.org/2012, 2012



19. Verhoeff, J.: Error Detecting Decimal Codes, volume 29. Math. Centrum, Ams-
terdam (1969).

         ICT Innovations 2012 Web Proceedings ISSN 1857-7288 417

           S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288 
                                               © ICT ACT – http://ictinnovations.org/2012, 2012



 

418          ICT Innovations 2012 Web Proceedings ISSN 1857-7288

           S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288 
                                               © ICT ACT – http://ictinnovations.org/2012, 2012


