
A Comparative Review of Contention-Aware
Scheduling Algorithms to Avoid Contention in Multicore

Systems

Genti Daci, Megi Tartari

Abstract. Contention for shared resources on multicore processors is an

emerging issue of great concern, as it affects directly performance of multicore

CPU systems. In this regard, Contention-Aware scheduling algorithms provide

a convenient and promising solution, aiming to reduce contention, by applying

different thread migration policies to the CPU cores. The main problem faced

by latest research when applying these schedulers in different multicore

systems, was a significant variation of performance achieved on different

system architectures. We aim to review and discuss the main reasons of such

variance arguing that most of the scheduling solutions were designed based on

the assumption that the underlying system was UMA (Uniform Memory Access

latency, single memory controller), but modern multicore systems are NUMA

(Non Uniform Memory Access latencies, multiple memory controllers). This

paper focuses on reviewing the challenges on solving the contention problem

for both types of system architectures. In this paper, we also provide a

comparative evaluation of the solutions applicable to UMA systems which are

the most extensively studied today, discussing their features, strengths and

weaknesses. For addressing performance variations, we will review Vector

Balancing, OBS-X and DIO scheduling for UMA systems. While for NUMA

systems, we will compare and discuss DINO and AMPS Schedulers which

supports NUMA architectures aiming to resolve performance issues and also

introduce the problems they have. This paper aims to propose further

improvements to these algorithms aiming to solve more efficiently the

contention problem, considering that performance-asymmetric architectures

may provide a cost-effective solution.

Keywords: Uniform Memory Access(UMA), Multicore CPU systems,

Contention-Aware Scheduling, Non Uniform Memory Access(NUMA), Vector

Balancing Scheduling, OBS-X Scheduler, DIO Scheduler, DINO Scheduler,

AMPS Scheduler.

1 Introduction

Contention for shared resources in multicore processors is a well-known problem.

The importance of handling this problem is related with the fact that multicore

processors are becoming so prevalent in desktops and also servers, that may be

considered a standard for modern computer systems and also with the fact that this

problem causes performance degradation. Let's consider a typical multicore system

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 489

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

described schematically in Figure 1, where cores share parts of memory hierarchy,

that we call "memory domains", and compete for resources like last level cache

(LLC), memory controllers, memory bus and prefetching hardware.

Fig. 1. A schematic view of a multicore system with 2 memory domains

Preliminary studies considered cache contention [5] as the most crucial factor

responsible for performance degradation. Driven by this assumption, they focused on

finding mechanisms to reduce cache contention like Utility Page Partitioning [8] and

Page Coloring [7]. Successive studies [1] calculated the contribution that each of the

shared resources in multicore processors have in degrading performance of such

systems, concluding that contention for last level cache (LLC) was not the dominant

factor in degrading performance. Based on this new conclusion, recent studies

selected scheduling as an attractive tool, as it does not require extra hardware and it is

relatively easy to integrate into the system. Contention-Aware scheduling [1][2][3][4]

is proposed as a promising solution to this problem, because it reduces contention, by

applying different thread migration policies. The major part of these studies, found

solutions that could be applied only in UMA (Uniform Memory Access) systems, that

are not suitable for NUMA (Non Uniform Memory Access). So for UMA systems we

will discuss DIO Scheduler, that uses thread classification schemes like SDC [9],

LLC miss rate [2], Pain metric [2], Animal Classes [10] to take the best scheduling

decision; OBS-X scheduling policy based on the data provided by the OS dynamic

observation of tasks behavior; Vector Balancing scheduling policy, that reduces

contention for shared resources by migrating tasks based on the task activity vector

information, that characterizes tasks regarding resource usage. For NUMA

architecture, that still requires further research, is proposed DINO Scheduler. We will

also discuss AMPS scheduler design for asymmetric-architecture multicore systems,

that supports NUMA.

The rest of the paper is organized as follows: In Section 2 we argument why

contention-aware algorithm is considered a promising solution to mitigating

contention. In Section 3 we review and discuss the scheduling algorithms valid for

UMA systems. In Section 4 we review and discuss the scheduling solutions proposed

for NUMA architectures and we conclude in Section 5.

490 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

2 Contention-Aware Scheduling a Promising Solution

Preliminary studies on improving thread performance in multicore systems were

mainly focused on the problem of contention for the shared cache. Cache partitioning

has a significant influence on performance closely relating with execution time. J.

Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan [5], implemented an

efficient layer for cache partitioning and sharing in the operating system through

virtual-physical address mapping. Their experiments showed a considerable increase

of performance up to 47 %, in the major part of selected workloads. A number of

cache partitioning methods have been proposed with performance objectives [7] [8]

[25]. A. Fedorova, M. I. Seltzer, M. D. Smith [17] designed a cache-aware scheduler

that compensates threads that were hurt by cache contention by giving them extra

CPU time.

The difficulty faced from S. Zhuravlev, S. Blagodurov and A. Fedorova [2] in

evaluating the contribution that each factor has on performance was that all the

degradation factors work in conjunction with each other in complicated and

practically inseparable ways.

To take into consideration the result of their work, it is proposed Contention-

Aware Scheduling, that separates competing threads onto separate memory hierarchy

domains to eliminate resource sharing and, as a consequence to mitigate contention.

To design a contention-aware scheduler, initially we must choose a thread

classification scheme, that predicts how they will affect each other when they will

compete for shared resources and a scheduling policy, which assigns threads to cores

given their classification. So the classification scheme serves to identify applications

that must be co-scheduled or not. S. Zhuravlev, S. Blagodurov and A. Fedorova [2]

help us with their contribution in analyzing the effectiveness of different classification

schemes like:

- SDC (Stack Distance Competition), a well known method [9] for predicting the

effects of cache contention among threads, based on the data provided from stack

distance profiles, that inform us on the rate of memory reuse of the applications.

- Animal Classes is based on the animalistic classification of application introduced

by Y. Xie and G. Loh [10]. It allows classifying applications in terms of their

influence on each other when co-scheduled in the same shared cache.

- Miss Rate is considered as the heuristic for contention, because it gives information

for all the shared resources contention.

- Pain Metric is based on cache sensitivity and cache intensity, where sensitivity is a

measure of how much an application will suffer when cache space is taken away from

it due to contention; intensity is a measure of how much an application will hurt

others by taking away their space in a shared cache.

The results of evaluation of effectiveness of these classification schemes, show that

the best contention predictor is Miss Rate [2][11]. A high miss rate exacerbates the

contention for all of these resources, since a high-miss-rate application will issue a

large number of requests to a memory controller and the memory bus, and will also be

typically characterized by a large number of prefetch requests, while SDC performed

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 491

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

worse because it does not take into account miss rates in its stack distance

competition model and it models the performance effects of cache contention, which

is not the only cause of degradation.

As a perfect scheduling policy, it is used an algorithm proposed by Y. Jiang, X.

Shen, J. Chen, R. Tripathi [16].This algorithm is guaranteed to find an optimal

scheduling assignment, i.e., the mapping of threads to cores, on a machine with

several clusters of cores sharing a cache as long as the co-run degradations for

applications are known. Jiang's methodology uses the co-run degradations to

construct a graph theoretic representation of the problem. The optimal scheduling

assignment can be found by solving a min-weight perfect matching-problem.

3 Proposed Schedulers for UMA Systems

Several studies investigated ways of reducing resource contention and as mentioned

above in Section2, one of the promising approaches that emerged recently is

contention-aware scheduling [2][3][4]. This represents a promising solution, as

several research co-scheduled tasks based on memory bandwidth or other shared

resources. We mention here the co-scheduling tasks proposed for SMP [19,22] and

for SMT [20]. These studies of contention-aware algorithms were focused primarily

on UMA (Uniform Access Memory) systems, where there are multiple shared LLCs,

but only a single memory node equipped with a single memory controller, and

memory can be accessed with the same latency for any core. In this section we will

review and evaluate OBS-X, Vector Balancing scheduling policy, and DIO scheduler

by discussing their features, merits, but also their gaps.

3.1 OBS-X Scheduling Policy based on OS Dynamic Observations

According to R. Knauerhase, P. Brett, B. Hohlt, and S. Hahn [3], in a multicore

environment the Operating System (OS) can and should make observations of the

behavior of threads running in the system. These observations, combined with

knowledge of the processor architecture, allow the implementation of different

scheduling policies in the Operating System. Good policies can improve the overall

performance of the system or performance of the application.

The performed experiments on this study have included various software and

hardware environments. The lack of intelligent thread migration and also the fact that

OS handles cores as independent, without taking into account that they share

resources represent the challenges faced by R. Knauerhase, P. Brett, B. Hohlt, and S.

Hahn during this study, where they found a policy to address these challenges, as the

traditional operating system scheduler does not take into account the fact that amount

of contention is quite dynamic because it depends on each task's behavior at a given

time. After analyzing this study, we faced a problem with the authors.

492 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

They developed an observation subsystem that collects historical and hysteretic

data by inspecting performance-monitoring counters and kernel data structures,

gathering so information on a per-thread basis. They introduced OBS-X scheduling

policy, that uses observations of each task's cache usage. OBS-X's goal is to distribute

cache-heavy threads throughout the system, helping so to spread out cache load.

When a new task is created, OBS-X looks for the LLC group with the smallest cache

load, and places the new task in this group. OBS-X strength relates with the fact that

this policy include the notion of overloaded tasks.

They ran two sets of experiments across four cores in two LLC groups. The first

set of experiments consisted of four instances of cachebuster, an application that

consumes as much cache as possible and four instances of spinloop, that consumes

CPU with a minimum of memory access. They used [cb,sl][cb,sl] pairing, which

represents the worst performance because both cachebuster applications contend for

cache resources at the same time. With the addition of OBS-X, cachebuster

performance increased between 12 % and 62 %, comparing with the default Linux

default load balancing. The reason for the increase is that OBS-X distributed the

cache-heavy tasks across LLC groups, thus minimizing the scheduling of heavy tasks

together. To approximate real-world workloads, they ran OBS-X with a set of

applications from the SPEC CPU 2000 suite run. The overall speedup increases to 4.6

%.

3.2 Vector Balancing Scheduling Policy

This policy reduces contention by migrating tasks, led by the information of task
activity vector [18], that represents the utilization of chip resources caused by tasks.

Based on the information provided form these vectors, it has been proposed from A.

Merkel, J. Stoess and F. Bellosa [4] the scheduling policy that avoids contention for

resources by co-scheduling tasks with different characteristics. The definition of

activity vectors requires the read of a small number of the performance-monitoring

counters (PMC) and asymmetric observations. This policy can be easily integrated in

the OS balancing policy, so we can exploit the existing strategies. The weakness of

this proposed solution by A. Merkel, J. Stoess and F. Bellosa [4] lies in the fact that

these authors to avoid complexity in their research, assumed that tasks do little I/O, do

not communicate with each other, they are independent. They used compute-intensive

tasks. This assumption is a weakness because it limits the space where the Vector

Balancing can be applied successfully. If there is communication, co-scheduling

based on resource utilization can have conflicting goals. This is a topic of future

work.

3.3 DIO (Distributed Intensity Online) Scheduler

S.�Zhuravlev, S. Blagodurov and A. Fedorova [2] proposed DIO contention-aware

scheduler. DIO scheduler continuously monitors the miss rates of applications, as we

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 493

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

argued in Sector 2 that it was the best contention predictor, then finds the best

performance case and separates threads. It obtains the miss rates of applications

dynamically online via performance counters. This makes DIO more attractive since

the stack distance profiles, which require extra work to obtain online, are not required.

Furthermore, the dynamic nature of the obtained miss rates makes DIO more flexible

to application that have a change in the miss rate due to LLC contention. DIO was

experimented in AMD Opteron with 8 cores, 4 cores for each domain. DIO improved

performance by up to 13 % relative to default. Another use of DIO is to ensure QoS

(Quality of Service) for critical applications, since it ensures to never select the worst

performance case of the scheduler.

4 Adaptation of Contention-Aware Schedulers for NUMA
 Systems

Research studies on contention-aware algorithms, were primarily focused on UMA

(Uniform Memory Access) systems, where there are multiple shared last level caches

(LLC), but they have only one memory node associated with a memory controller,

and the memory can be accessed with the same latency from every core. Modern

multicore systems are using massively the NUMA (Non Uniform Memory Access)

architecture, because of its decentralized and scalable nature. In these systems there is

one memory node for each memory domain. Local nodes can be accessed for a

shorter time than the distant ones, and each node has its own controller. According to

S. Blagodurov, S. Zhuravlev, M. Dashti and A. Fedorova [1], when existing

contention-aware schedulers designed for UMA architectures, were applied on a

NUMA system (illustrated on Figure 3 [1]), they did not effectively manage

contention, but they also degraded performance compared with the default

contention-unaware scheduler (30% performance degradation).

4.1 Why existing Contention Management Algorithms degrade Performance on
 NUMA Systems?

S.�Zhuravlev, S. Blagodurov and A. Fedorova [2] proposed DIO contention-aware

scheduler. DIO scheduler continuously monitors the miss rates of applications, as we

argued in Sector 2 that it was the best contention predictor, then finds the best

performance case and separates threads. It obtains the miss rates of applications

dynamically online via performance counters. This makes DIO more attractive since

the stack distance profiles, which require extra work to obtain online, are not required.

Furthermore, the dynamic nature of the obtained miss rates makes DIO more flexible

to application that have a change in the miss rate due to LLC contention. DIO was

experimented in AMD Opteron with 8 cores, 4 cores for each domain. DIO improved

performance by up to 13 % relative to default. Another use of DIO is to ensure QoS

494 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

(Quality of Service) for critical applications, since it ensures to never select the worst

performance case of the scheduler.

4.2 DINO Contention-Management Algorithm for NUMA Systems

As argued above, previous contention-aware algorithms were valid only on UMA

architectures, but when applied to NUMA architectures, used in today's modern

multicore processors hurt their performance. To address this problem, a contention-

aware algorithm on a NUMA system must migrate the memory of the thread to the

same domain where it migrates the thread itself. However, the need to move memory

along with the thread makes thread migrations costly. So the algorithm must

minimize thread migrations, performing them only when they are likely to

significantly increase performance, and when migrating memory it must carefully

decide which pages are most profitable to migrate. These are the challenges of

designing a new contention-aware scheduling algorithm, which is appropriate with

NUMA architecture. These challenges are handled in the study of S. Blagodurov, S.

Zhuravlev, M. Dashti and A. Fedorova [1]. They have designed and implemented

Distributed Intensity NUMA Online (DINO).

DINO scheduler uses the same heuristic model for contention as the DIO

(Distributed Intensity Online) scheduler discussed in Section 3.3, that uses the LLC
miss rate criteria for predicting contention. First of all, DINO tries to co-schedule

threads of the same application on the same memory domain, provided that this does

not conflict with DINO's contention-aware assignment. This is true for many

applications [14]. DINO organizes threads in broad classes according to their miss

rates as shown in the research study of Y. Xie and G. Loh [10]. The classes in which

threads get divided are:

- Turtles: less than 2 LLC miss rates for 1000 instructions

- Devils: 2-100 LLC misses for 1000 instructions

- Super_Devils: more than 100 LLC misses for 1000 instructions

So the migrations will be performed only when threads change their classes, while

they preserve their thread-core affinity relation as much as possible. For

multithreaded applications DINO tries to co-schedule threads of the same application,

in the same memory domain, but always avoiding to create conflicts in DINO's

definitions regarding contention management. It also uses techniques to evaluate if it

is convenient to co-schedule threads in the same domain or it would be better to

separate them? DINO in this situation should at least avoid memory migration back

and forth, preventing so performance degradation. DINO achieves this by separating

threads in classes as explained above.

Results of DINO implementation showed that DINO achieved up to 30 %

performance improvements for jobs in the MPI workload.

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 495

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

4.3 AMPS the Scheduling Algorithm for Performance-Asymmetric Multicore
 System NUMA & SMP

Since industry is going towards multicore technology, and traditional operating

systems are based on homogenous hardware, and performance-asymmetric

architectures (or heterogeneous) [21][23], present a very convenient solution

regarding the cost they have, it appears the necessity to setup the relation between two

different technologies. As a first step towards this, T. Li, D. Baumberger, D. A.

Koufaty and S. Hahn [6] designed the operating system scheduler AMPS, that

manages efficiently both SMP and NUMA-style performance-asymmetric-

architectures. AMPS contains three components:

- Asymmetry-aware-load-balancing, that balances threads to cores in proportion with

their computing power

- Faster-core-first scheduling, that controls thread migrations based on predictions of

their overhead.

Our evaluation demonstrated that AMPS improved stock Linux for asymmetric

systems in the aspect of performance and fairness.

AMPS uses thread-independent policies, which schedule threads independently

regardless of application types and dependencies. This is considered a weakness that

should be eliminated in the future. Thread-dependent policies mostly exists in

research. H. Zheng, J. Nieh [24] dynamically detect process dependencies to guide

scheduling.

5 Related Works

Research on solutions for the problem of resource contention on multicore systems is

wide and dates back many years. Initial research in this field, were based on the idea

that the primary factor on degradation performance in such systems was contention

for shared cache. We mention the study of J. Lin, Q. Lu, X. Ding, Z. Zhang, X.

Zhang, P. Sadayappan [5] who evaluated the impact of existing cache partitioning

methods on multicore system performance. They observed with most workloads, a

significant performance improvement (up to 47 %). The only limitation of this study

was that their experiments were limited by the hardware platform they used.

S. Zhuravlev, S. Blagodurov, A. Fedorova [2] through extensive experimentation

on real systems, determined that along with it, other factors like memory controller

contention, memory bus contention and prefetching hardware contention all combine

in complex ways to create the performance degradation. They proposed DIO which

improved performance by up to 13 % relative to the default operating system

scheduler. Prior to DIO, were proposed also other scheduling policies like OBS-X [3],

which uses the operating systems observations of behavior of threads running in the

systems and then makes a decision on how to migrate threads for a better

performance; All these studies were primarily focused on UMA systems, while

496 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

DINO contention-aware scheduler, remains the most appropriate until today for

NUMA and uses miss rate as a contention predictor, like DIO does.

Prior research demonstrated that compared to homogeneous ones, asymmetric

architectures deliver higher performance at lower costs in terms of die area and power

consumption. T. Li, D. Baumberger, D. A. Koufaty, S. Hahn [6] proposed AMPS

scheduler that manages efficiently both SMP and NUMA-style performance-

asymmetric architectures. The problem of contention of heterogeneous architectures

is almost uncovered, that is why it is a field of future research.

6 Conclusions and Discussions

Based on the wide dissemination of multicore processors, we chose to handle the

topic of contention for shared resources in such systems, as it affects directly their

performance. One of the major difficulty encountered during design of such

schedulers, was selecting the most effective thread classification scheme, used to

choose the best performance case respective to a specific pairing of co-scheduled

threads. To mitigate contention for shared resources, we discussed and reviewed the

best scheduling algorithms and policies, that do not perform equally when applied to

different multicore architectures. So for UMA systems, we reviewed OBS-X

scheduling policy, that uses the operating system dynamic observations on tasks

behavior to migrate threads; Vector Balancing scheduling that takes migration

decisions based on the task activity vector information and DIO contention-aware

scheduling which is the best solution for UMA, because it mitigates contention for all

shared resources, not only for cache contention, as OBS-X does. Moreover, Vector

Balancing provides a limited solution, as it is based on compute-intensive and

independent tasks, that do little I/O. These previously proposed contention-aware

scheduling policies applied to NUMA modern multicore systems proved to hurt these

systems' performance, because they fail to eliminate memory controller contention

and create additional interconnect contention, that is why they needed adaptation to

this new architecture. The most appropriate solution for NUMA systems is the DINO

contention-aware scheduler, as it solves the performance degradation problem

associated with the previous contention-aware solutions by migrating the thread along

with its memory and also eliminates superfluous migrations. AMPS is the first

scheduler proposed for the performance-asymmetric architectures, that supports both

NUMA and SMP-style performance-asymmetric architectures, but it does not

completely address contention, requiring further research in the future.

References

1. Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A Case for NUMA-aware

Contention Management on Multicore Systems. In: The 2011 USENIX Annual Technical

Conference, pp. 1-9 (2011).

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 497

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

2. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing Contention on Multicore

Processors via Scheduling. In: Proceedings of ASPLOS, pp.1-6 (2010).

3. Knauerhase, R., Brett, P., Hohlt, B., Hahn, S.: Using OS Observations to Improve

Performance in Multicore Systems. In: IEEE Micro 28, 3 , pp. 54-58 (2008).

4. Merkel, A., Stoess, J., Bellosa, F. : Resource-Conscious Scheduling for Energy Efficiency

on Multicore Processors. In: Proceedings of EuroSys, pp.6-8, pp.11-13 (2010).

5. Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Gaining Insights into

Multicore Cache Partitioning: Bridging the Gap between Simulation and Real Systems. In:

Proceedings of International Symposium on High Performance Computer Architecture, pp.
1-5 (2008).

6. Li, T., Baumberger, D., Koufaty, D.A., Hahn, S.: Efficient Operating System Scheduling

for Performance- Asymmetric Multi-core Architectures. In: Proceedings of

Supercomputing, pp.1-4, pp.8-10 (2007).

7. Zhang, X., Dwarkadas, S., Shen, K.: Towards practical page coloring-based multicore cache

management. In: Proceedings of the 4th ACM European Conference on Computer Systems

2009.

8. Qureshi, M. K., Patt, Y. N.: Utility-based cache partitioning: A low overhead, high-

performance, runtime mechanism to partition shared caches. In MICRO 39: Proceedings of

the 39th Annual IEEE/ACM International Symposium on Microarchitecture , pp. 1-3

(2006).

9. Chandra, D., Guo, F., Kim, S., Solihin, Y. : Predicting InterThread Cache Contention on a

Chip Multi-Processor Architecture. In HPCA ’05: Proceedings of the 11th International

Symposium on High Performance Computer Architecture (2005).

10. Xie, Y., Loh, G.: Dynamic Classification of Program Memory Behaviors in CMPs. In:

 Proceeding of CMP-MSI, pp. 2-4 (2008).
11. Blagodurov, S., Zhuravlev, S., Fedorova, A.: Contention-aware Scheduling on Multicore

Systems. ACM Trans. Comput. Syst. 28 (December 2010).

14. Zhang, E. Z., Jiang, Y., Shen, X.: Does Cache Sharing on Modern CMP Matter to the

Performance of Contemporary Multithreaded Programs? In: Proceedings of PPOPP (2010).

16. Jiang, Y., Shen, X., Chen, J., Tripathi, R.: Analysis and Approximation of Optimal Co-

 Scheduling on Chip Multiprocessors. In: Proceedings of the 17th International Conference

 on Parallel Architectures and Compilation Techniques (PACT '08), pp. 220-229 (2008).

17. Fedorova, A., Seltzer, M.I, Smith, M.D.: Improving Performance Isolation on Chip

Multiprocessors via an Operating System Scheduler. In: Proceedings of the Sixteenth

International Conference on Parallel Architectures and Compilation Techniques (PACT'07),

pp.25-38 (2007).

19. Zhang, X., Dwarkadas, S., Folkmanis, G., Shen, K.: Processor Hardware Counter Statistics

as a First-Class System Resource. In: Proceedings of the 11th USENIX workshop on Hot

topics in operating systems (HOTOS'07).

20. McGregor, R. L., Antonopoulos, C. D., Nikolopoulos D. S.: Scheduling Algorithms for

Effective Thread Pairing on Irbid Mutiprocessors. In: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium (IPDPS'05).

21.Shelepov, D., Saez Alcaide, J.C., Jefferym S., Fedorova, A., Perez, N., Huang, Z. F.,

Blagodurov, S., Kumar, V.: A Scheduler for Heterogeneous Multicore Systems. In: SIGOPS

Operating Review,43(2) (2009).

22. Antonopoulos, C., Nikolopoulos, D., Papatheodorou, T.: Scheduling Algorithms with Bus

Bandwidth Considerations for SMPs. In: International Conference on Parallel Processing

(October 2003).

498 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

23. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The Impact of Performance Asymmetry

in Emerging Multicore Architectures. In: Proceedings of the 32th Annual International

Symposium on Computer Architecture, pp. 506-517 (June 2005).

24. Zheng, H., Nieh, J.: A Scheduler with Automatic Process Dependency Detection. In:

 Proceedings of the First Symposium on Networked Systems Design and Implementation,

 pp. 183-196 (March 2004).

25. Suh, G. E., Devadas, S., Rudolph, L.: A New Memory Monitoring Scheme for Memory-

Aware Scheduling and Partitioning. In: Proceedings HPCA’02, pp.117-128 (2002).

 ICT Innovations 2012 Web Proceedings ISSN 1857-7288 499

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

500 ICT Innovations 2012 Web Proceedings ISSN 1857-7288

 S. Markovski, M. Gusev (Editors): ICT Innovations 2012, Web Proceedings, ISSN 1857-7288
 © ICT ACT – http://ictinnovations.org/2012, 2012

